Skip to main content
Log in

Effective Improvement of Pt Catalyst for Exhaust Gas Purification by Using the Highly Crystallized CeO2 as an Additive

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Over the last few decades, Pd-based three-way catalysts (TWCs) have been more extensively used than Pt-based TWCs because of their higher thermal stability. In this study, the addition of CeO2 to a Pt-based TWC was performed to improve the reductivity and dispersion of Pt particles after aging at 1000 °C. The aged dispersion of the Pt-loaded CeO2 was much higher than that of a commonly used La2O3–CeO2–ZrO2 catalyst. Furthermore, the hydrogen temperature-programmed reduction conducted on Pt/CeO2 revealed that the Pt-loaded highly crystalline CeO2 (HC–CeO2) exhibited a higher reductivity as compared with that of the high surface area CeO2 (HS–CeO2). Adding a small amount of HC–CeO2 to the Pt-based TWC increased both the Pt dispersion and reductivity after aging. Owing to the high dispersion and reductivity of Pt, Rh/Pt-based TWCs with HC–CeO2 used as an additive to the Pt catalyst layer demonstrated a higher catalytic activity than that of the Rh/Pd-based TWCs even after aging at 1000 °C in an exhaust gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed during this study are referenced in the text and publicly available.

References

  1. Rood S, Eslava S, Manigrasso A, Bannister C (2019) Recent advances in gasoline three-way catalyst formulation: a review. Proc Inst Mech Eng Part D 234:936–949

    Article  Google Scholar 

  2. Jingshu Z, Mark PE, Timothy JW, Frank RF, Richard R, Randolph EK (2016) Environ Sci Technol 50:7687–7695

    Article  Google Scholar 

  3. Ogawa M, Sato R, Kikuchi S, Iwachido K (2017) JSAE 48:1015–1020

    Google Scholar 

  4. Sobukawa H (2002) R&D Review Toyota CRDL 37:1–5

    CAS  Google Scholar 

  5. Ozawa M, Matuda K, Suzuki S (2000) J Alloys Compd 303:56–59

    Article  Google Scholar 

  6. Ozawa M, Okouchi T, Haneda M (2015) Catal Today 242:329–337

    Article  CAS  Google Scholar 

  7. Johes J, Xing H, DeLaRiva AT, Peterson EJ, Pham H, Challa SC, Qi G, Oh S, Wiebenga MHW, Hernandez XIP, Wang Y, Datye MH (2016) Science 353:6295

    Google Scholar 

  8. Hatanaka M, Takahashi N, Takahashi N, Tanabe T, Nagai Y, Suda A, Shinjoh H (2009) J Catal 266(2):182–190

    Article  CAS  Google Scholar 

  9. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Science 358:1419

    Article  CAS  PubMed  Google Scholar 

  10. Jan A, Shin J, Ahn J, Yang S, Yoon KJ, Son J-W, Kim H, Lee J-L, Ji H-I (2019) RSC Adv 9(46):27002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. González-Velasco JR, Entrena J, González-Marcos JA, Gutiérrez-Ortiz JI, Gutiérrez-Ortiz MA (1994) Appl Catal B 3:191–204

    Article  Google Scholar 

  12. Ohtake N, Katoh M, Sugiyama S (2017) JCS-Japan 125(2):57–61

    Google Scholar 

  13. Lanab L, Huangc X, Zhouc W, Lib H, Xiang J, Chen S, Chen Y (2021) RSC Adv 11:7015–7024

    Article  Google Scholar 

  14. Ozawa M, Takahashi-Morita M, Kobayashi K, Haneda M (2017) Catal Today 281:482–489

    Article  CAS  Google Scholar 

  15. Ozawa M, Misaki M, Iwakawa M, Hattori M, Kobayashi K, Higuchi K, Arai S (2019) Catal Today 332:251–258

    Article  CAS  Google Scholar 

  16. González-Velasco JR, Gutiérrez-Ortiz MA, Marc JL et al (2001) Top Catal 16:101–106

    Article  Google Scholar 

  17. Kobayashi T, Yamada T, Kayano K (2001) Appl Catal B 30(3–4):287–292

    Article  CAS  Google Scholar 

  18. Takeguchi T, Manabe S, Kikuchi R, Eguchi K, Kanazawa T, Matsumoto S, Ueda W (2005) Appl Catal A 293:91–96

    Article  CAS  Google Scholar 

  19. Lee J, Ryou YS, Chan X, Kim TJ, Do HK (2016) J Phys Chem C 120(45):25870–25879

    Article  CAS  Google Scholar 

  20. Gao Y, Wang W, Chang S, Huang W (2013) ChemCatChem 5:3610–3620

    Article  CAS  Google Scholar 

  21. Kamiuchi N, Haneda M, Ozawa M (2014) Catal Today 232:179–184

    Article  CAS  Google Scholar 

  22. Kamiuchi N, Haneda M, Ozawa M (2013) Catal Today 201:79–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Wakabayashi or M. Haneda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Morita, I., Nagao, Y. et al. Effective Improvement of Pt Catalyst for Exhaust Gas Purification by Using the Highly Crystallized CeO2 as an Additive. Top Catal 66, 908–914 (2023). https://doi.org/10.1007/s11244-022-01745-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01745-9

Keywords

Navigation