Skip to main content
Log in

Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The O–O bond activation is crucial in many oxidation reactions and dioxygen reduction reactions. Herein, we performed density functional theory (DFT) calculations to investigate how the O–O bond in a MnIV–peroxo corrole complex is activated with the addition of acid to afford the high-valent MnV–oxo corrole complex. Our results showed that protonation of MnIV–peroxo leads to the Mn–hydroperoxo complex having a hybrid MnIV–OOH and MnIII(Cor.+)–OOH character. The subsequent O–O bond cleavage is however thermodynamically unfavorable. In contrast, aided with the MnIII–corrole, the O–O bond cleavage can proceed via a binuclear mechanism to produce the MnV–oxo and MnIV–OH complexes with a small barrier and a high exothermicity. These findings provide new insights into the O–O bond cleavage for Mn–hydroperoxo complexes and could offer a clue for the development of biomimetic oxidation catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Costas M, Mehn MP, Jensen MP, Que L (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104:939–986. https://doi.org/10.1021/cr020628n

    Article  CAS  PubMed  Google Scholar 

  2. Lewis EA, Tolman WB (2004) Reactivity of dioxygen-copper systems. Chem Rev 104:1047–1076. https://doi.org/10.1021/cr020633r

    Article  CAS  PubMed  Google Scholar 

  3. Solomon EI, Sarangi R, Woertink JS, Augustine AJ, Yoon J, Ghosh S (2007) O2 and N2O activation by bi-, tri-, and tetranuclear Cu clusters in biology. Acc Chem Res 40:581–591. https://doi.org/10.1021/ar600060t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krebs C, Fujimori GD, Walsh CT, Bollinger JM (2007) Non-heme Fe(IV)–oxo intermediates. Acc Chem Res 40:484–492. https://doi.org/10.1021/ar700066p

    Article  CAS  PubMed  Google Scholar 

  5. Que L, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340. https://doi.org/10.1038/nature07371

    Article  CAS  PubMed  Google Scholar 

  6. Lewis JC, Coelho PS, Arnold FH (2011) Enzymatic functionalization of carbon-hydrogen bonds. Chem Soc Rev 40:2003–2021. https://doi.org/10.1039/C0CS00067A

    Article  CAS  PubMed  Google Scholar 

  7. Tinberg CE, Lippard SJ (2011) Dioxygen activation in soluble methane monooxygenase. Acc Chem Res 44:280–288. https://doi.org/10.1021/ar1001473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hohenberger J, Ray K, Meyer K (2012) The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat Commun 3:720. https://doi.org/10.1038/ncomms1718

    Article  CAS  PubMed  Google Scholar 

  9. Whittaker JW (2012) Non-heme manganese catalase—the “other” catalase. Arch Biochem Biophys 525:111–120. https://doi.org/10.1016/j.abb.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  10. Ray K, Pfaff FF, Wang B, Nam W (2014) Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions. J Am Chem Soc 136:13942–13958. https://doi.org/10.1021/ja507807v

    Article  CAS  PubMed  Google Scholar 

  11. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853. https://doi.org/10.1021/cr400327t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JY, Karlin KD (2015) Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation. Curr Opin Chem Biol 25:184–193. https://doi.org/10.1016/j.cbpa.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294. https://doi.org/10.1021/acs.biochem.5b00198

    Article  CAS  PubMed  Google Scholar 

  14. Solomon EI, Park K (2016) Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem 21:575–588. https://doi.org/10.1007/s00775-016-1372-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Solomon EI, Goudarzi S, Sutherlin KD (2016) O2 activation by non-heme iron enzymes. Biochemistry 55:6363–6374. https://doi.org/10.1021/acs.biochem.6b00635

    Article  CAS  PubMed  Google Scholar 

  16. Liu JJ, Diaz DE, Quist DA, Karlin KD (2016) Copper(I)-dioxygen adducts and copper enzyme mechanisms. Isr J Chem 56:738–755. https://doi.org/10.1002/ijch.201600025

    Article  CAS  Google Scholar 

  17. Kal S, Que L (2017) Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem 22:339–365. https://doi.org/10.1007/s00775-016-1431-2

    Article  CAS  PubMed  Google Scholar 

  18. Olivo G, Cussó O, Borrell M, Costas M (2017) Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. J Biol Inorg Chem 22:425–452. https://doi.org/10.1007/s00775-016-1434-z

    Article  CAS  PubMed  Google Scholar 

  19. Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM (2017) Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. J Biol Inorg Chem 22:221–235. https://doi.org/10.1007/s00775-016-1425-0

    Article  CAS  PubMed  Google Scholar 

  20. Faponle AS, de Visser SP (2017) The role of nonheme transition metal-oxo, -peroxo, and -superoxo intermediates in enzyme catalysis and reactions of bioinspired complexes. Adv Inorg Chem 70:167–194. https://doi.org/10.1016/bs.adioch.2017.01.002

    Article  CAS  Google Scholar 

  21. Jasniewski AJ, Que L (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev 118:2554–2592. https://doi.org/10.1021/acs.chemrev.7b00457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang X, Groves JT (2018) Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem Rev 118:2491–2553. https://doi.org/10.1021/acs.chemrev.7b00373

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee R, Jones JC, Lipscomb JD (2019) Soluble methane monooxygenase. Annu Rev Biochem 88:409–431. https://doi.org/10.1146/annurev-biochem-013118-111529

    Article  CAS  PubMed  Google Scholar 

  24. Guo M, Corona T, Ray K, Nam W (2019) Heme and nonheme high-valent iron and manganese oxo cores in biological and abiological oxidation reactions. Acs Central Sci 5:13–28. https://doi.org/10.1021/acscentsci.8b00698

    Article  CAS  Google Scholar 

  25. Battistella B, Ray K (2020) O2 and H2O2 activations at dinuclear Mn and Fe active sites. Coord Chem Rev 408:213176. https://doi.org/10.1016/j.ccr.2019.213176

    Article  CAS  Google Scholar 

  26. Schroder D, Schwarz H, Shaik S (2000) Characterization, orbital description, and reactivity patterns of transition-metal oxo species in the gas phase. In: Meunier B (ed) metal-oxo and metal-peroxo species in catalytic oxidations, vol 97. Springer, Berlin, pp 91–123. https://doi.org/10.1007/3-540-46592-8_4

    Chapter  Google Scholar 

  27. Solomon EI, Randall DW, Glaser T (2000) Electronic structures of active sites in electron transfer metalloproteins: contributions to reactivity. Coord Chem Rev 200:595–632. https://doi.org/10.1016/S0010-8545(00)00332-5

    Article  Google Scholar 

  28. Mirica LM, Ottenwaelder X, Stack TDP (2004) Structure and spectroscopy of copper-dioxygen complexes. Chem Rev 104:1013–1046. https://doi.org/10.1021/cr020632z

    Article  CAS  PubMed  Google Scholar 

  29. Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev 104:903–938. https://doi.org/10.1021/cr020627v

    Article  CAS  PubMed  Google Scholar 

  30. Nam W (2007) High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc Chem Res 40:522–531. https://doi.org/10.1021/ar700027f

    Article  CAS  PubMed  Google Scholar 

  31. Cho J, Sarangi R, Nam W (2012) Mononuclear metal–O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands. Acc Chem Res 45:1321–1330. https://doi.org/10.1021/ar3000019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Visser SP, Rohde JU, Lee YM, Cho J, Nam W (2013) Intrinsic properties and reactivities of mononuclear nonheme iron-oxygen complexes bearing the tetramethylcyclam ligand. Coord Chem Rev 257:381–393. https://doi.org/10.1016/j.ccr.2012.06.002

    Article  CAS  Google Scholar 

  33. Fukuzumi S, Karlin KD (2013) Kinetics and thermodynamics of formation and electron-transfer reactions of Cu–O2 and Cu2–O2 complexes. Coord Chem Rev 257:187–195. https://doi.org/10.1016/j.ccr.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  34. Nam W, Lee YM, Fukuzumi S (2014) Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. Acc Chem Res 47:1146–1154. https://doi.org/10.1021/ar400258p

    Article  CAS  PubMed  Google Scholar 

  35. Nam W (2015) Synthetic mononuclear nonheme iron-oxygen intermediates. Acc Chem Res 48:2415–2423. https://doi.org/10.1021/acs.accounts.5b00218

    Article  CAS  PubMed  Google Scholar 

  36. Young KJ, Brennan BJ, Tagore R, Brudvig GW (2015) Photosynthetic water oxidation: insights from manganese model chemistry. Acc Chem Res 48:567–574. https://doi.org/10.1021/ar5004175

    Article  CAS  PubMed  Google Scholar 

  37. Serrano-Plana J, Garcia-Bosch I, Company A, Costas M (2015) Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities. Acc Chem Res 48:2397–2406. https://doi.org/10.1021/acs.accounts.5b00187

    Article  CAS  PubMed  Google Scholar 

  38. Sahu S, Goldberg DP (2016) Activation of dioxygen by iron and manganese complexes: a heme and nonheme perspective. J Am Chem Soc 138:11410–11428. https://doi.org/10.1021/jacs.6b05251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engelmann X, Monte-Perez I, Ray K (2016) Oxidation reactions with bioinspired mononuclear non-heme metal-oxo complexes. Angew Chem Int Ed Engl 55:7632–7649. https://doi.org/10.1002/anie.201600507

    Article  CAS  PubMed  Google Scholar 

  40. Quist DA, Diaz DE, Liu JJ, Karlin KD (2017) Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 22:253–288. https://doi.org/10.1007/s00775-016-1415-2

    Article  CAS  PubMed  Google Scholar 

  41. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB (2017) Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem Rev 117:2059–2107. https://doi.org/10.1021/acs.chemrev.6b00636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong S, Lee YM, Ray K, Nam W (2017) Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coord Chem Rev 334:25–42. https://doi.org/10.1016/j.ccr.2016.07.006

    Article  CAS  Google Scholar 

  43. Sankaralingam M, Lee YM, Nam W, Fukuzumi S (2018) Amphoteric reactivity of metal-oxygen complexes in oxidation reactions. Coord Chem Rev 365:41–59. https://doi.org/10.1016/j.ccr.2018.03.003

    Article  CAS  Google Scholar 

  44. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD (2018) Synthetic Fe/Cu complexes: toward understanding heme-copper oxidase structure and function. Chem Rev 118:10840–11022. https://doi.org/10.1021/acs.chemrev.8b00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo M, Lee YM, Fukuzumi S, Nam W (2021) Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 435:213807. https://doi.org/10.1016/j.ccr.2021.213807

    Article  CAS  Google Scholar 

  46. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100:235–350. https://doi.org/10.1021/cr9900275

    Article  CAS  PubMed  Google Scholar 

  47. Rice DB, Massie AA, Jackson TA (2017) Manganese-oxygen intermediates in O-O bond activation and hydrogen-atom transfer reactions. Acc Chem Res 50:2706–2717. https://doi.org/10.1021/acs.accounts.7b00343

    Article  CAS  PubMed  Google Scholar 

  48. Baglia RA, Zaragoza JPT, Goldberg DP (2017) Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes. Chem Rev 117:13320–13352. https://doi.org/10.1021/acs.chemrev.7b00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fukuzumi S, Lee Y-M, Nam W (2019) Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Trans 48:9469–9489. https://doi.org/10.1039/C9DT01402K

    Article  CAS  PubMed  Google Scholar 

  50. Fukuzumi S, Cho K-B, Lee Y-M, Hong S, Nam W (2020) Mechanistic dichotomies in redox reactions of mononuclear metal-oxygen intermediates. Chem Soc Rev 49:8988–9027. https://doi.org/10.1039/D0CS01251C

    Article  CAS  PubMed  Google Scholar 

  51. Raymond J, Blankenship RE (2008) The origin of the oxygen-evolving complex. Coord Chem Rev 252:377–383. https://doi.org/10.1016/j.ccr.2007.08.026

    Article  CAS  Google Scholar 

  52. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller A-F, Teixeira M, Valentine JS (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114:3854–3918. https://doi.org/10.1021/cr4005296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldberg DP (2007) Corrolazines: new frontiers in high-valent metalloporphyrinoid stability and reactivity. Acc Chem Res 40:626–634. https://doi.org/10.1021/ar700039y

    Article  CAS  PubMed  Google Scholar 

  54. Yin G (2013) Understanding the oxidative relationships of the metal oxo, hydroxo and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity. Acc Chem Res 46:483–492. https://doi.org/10.1021/ar300208z

    Article  CAS  PubMed  Google Scholar 

  55. Liu W, Groves JT (2015) Manganese catalyzed C-H halogenation. Acc Chem Res 48:1727–1735. https://doi.org/10.1021/acs.accounts.5b00062

    Article  CAS  PubMed  Google Scholar 

  56. Prokop KA, Goldberg DP (2012) Generation of an isolable, monomeric manganese(V)–oxo complex from O2 and visible light. J Am Chem Soc 134:8014–8017. https://doi.org/10.1021/ja300888t

    Article  CAS  PubMed  Google Scholar 

  57. Neu HM, Baglia RA, Goldberg DP (2015) A balancing act: stability versus reactivity of Mn(O) complexes. Acc Chem Res 48:2754–2764. https://doi.org/10.1021/acs.accounts.5b00273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJL, Xiao J (2021) Oxidative cleavage of alkenes by O2 with a non-heme manganese catalyst. J Am Chem Soc 143:10005–10013. https://doi.org/10.1021/jacs.1c05757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jung J, Neu HM, Leeladee P, Siegler MA, Ohkubo K, Goldberg DP, Fukuzumi S (2016) Photocatalytic oxygenation of substrates by dioxygen with protonated manganese(III) corrolazine. Inorg Chem 55:3218–3228. https://doi.org/10.1021/acs.inorgchem.5b02019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nardis S, Mandoj F, Stefanelli M, Paolesse R (2019) Metal complexes of corrole. Coord Chem Rev 388:360–405. https://doi.org/10.1016/j.ccr.2019.02.034

    Article  CAS  Google Scholar 

  61. Liu H-Y, Mahmood MHR, Qiu S-X, Chang CK (2013) Recent developments in manganese corrole chemistry. Coord Chem Rev 257:1306–1333. https://doi.org/10.1016/j.ccr.2012.12.017

    Article  CAS  Google Scholar 

  62. Gross Z, Golubkov G, Simkhovich L (2000) Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole. Angew Chem Int Ed 39:4045–4047

    Article  CAS  Google Scholar 

  63. Golubkov G, Bendix J, Gray HB, Mahammed A, Goldberg I, DiBilio AJ, Gross Z (2001) High-valent manganese corroles and the first perhalogenated metallocorrole catalyst. Angew Chem Int Ed 40:2190–2192

    Article  Google Scholar 

  64. Zhang R, Harischandra DN, Newcomb M (2005) Laser flash photolysis generation and kinetic studies of corrole–manganese(v)-oxo intermediates. Chem Eur J 11:5713–5720. https://doi.org/10.1002/chem.200500134

    Article  CAS  PubMed  Google Scholar 

  65. Leeladee P, Baglia RA, Prokop KA, Latifi R, de Visser SP, Goldberg DP (2012) Valence tautomerism in a high-valent manganese–oxo porphyrinoid complex induced by a lewis acid. J Am Chem Soc 134:10397–10400. https://doi.org/10.1021/ja304609n

    Article  CAS  PubMed  Google Scholar 

  66. Bougher CJ, Liu S, Hicks SD, Abu-Omar MM (2015) Valence tautomerization of high-valent manganese(V)-oxo corrole induced by protonation of the oxo ligand. J Am Chem Soc 137:14481–14487. https://doi.org/10.1021/jacs.5b09759

    Article  CAS  PubMed  Google Scholar 

  67. Neu HM, Jung J, Baglia RA, Siegler MA, Ohkubo K, Fukuzumi S, Goldberg DP (2015) Light-driven, proton-controlled, catalytic aerobic C-H oxidation mediated by a Mn(III) porphyrinoid complex. J Am Chem Soc 137:4614–4617. https://doi.org/10.1021/jacs.5b00816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jung J, Ohkubo K, Prokop-Prigge KA, Neu HM, Goldberg DP, Fukuzumi S (2013) Photochemical oxidation of a manganese(III) complex with oxygen and toluene derivatives to form a manganese(V)-oxo complex. Inorg Chem 52:13594–13604. https://doi.org/10.1021/ic402121j

    Article  CAS  PubMed  Google Scholar 

  69. Bougher CJ, Abu-Omar MM (2016) Lewis-acid-assisted hydrogen atom transfer to manganese(V)-oxo corrole through valence tautomerization. ChemistryOpen 5:522–524. https://doi.org/10.1002/open.201600117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim SH, Park H, Seo MS, Kubo M, Ogura T, Klajn J, Gryko DT, Valentine JS, Nam W (2010) Reversible O-O bond cleavage and formation between Mn(IV)-peroxo and Mn(V)-oxo corroles. J Am Chem Soc 132:14030–14032. https://doi.org/10.1021/ja1066465

    Article  CAS  PubMed  Google Scholar 

  71. Guo M, Lee YM, Gupta R, Seo MS, Ohta T, Wang HH, Liu HY, Orcid DSN, Sarangi R, Fukuzumi S, Nam W (2017) Dioxygen activation and O-O bond formation reactions by manganese corroles. J Am Chem Soc 139:15858–15867. https://doi.org/10.1021/jacs.7b08678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu JF, Lai WZ (2021) Mechanistic insights into dioxygen activation by a manganese corrole complex: a broken-symmetry DFT study. RSC Adv 11:24852–24861. https://doi.org/10.1039/D1RA02722K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gamba I, Codola Z, Lloret-Fillol J, Costas M (2017) Making and breaking of the O-O bond at iron complexes. Coord Chem Rev 334:2–24. https://doi.org/10.1016/j.ccr.2016.11.007

    Article  CAS  Google Scholar 

  74. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ Gaussian 16 Revision A.03 Wallingford CT: Gaussian Inc.

  75. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  76. Jensen KP (2008) Bioinorganic chemistry modeled with the TPSSh density functional. Inorg Chem 47:10357–10365. https://doi.org/10.1021/ic800841t

    Article  CAS  PubMed  Google Scholar 

  77. Cirera J, Via-Nadal M, Ruiz E (2018) Benchmarking density functional methods for calculation of state energies of first row spin-crossover molecules. Inorg Chem 57:14097–14105. https://doi.org/10.1021/acs.inorgchem.8b01821

    Article  CAS  PubMed  Google Scholar 

  78. Ashley DC, Baik M-H (2016) The electronic structure of [Mn(V)═O]: what is the connection between oxyl radical character, physical oxidation state, and reactivity? ACS Catal 6:7202–7216. https://doi.org/10.1021/acscatal.6b01793

    Article  CAS  Google Scholar 

  79. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  80. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  81. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  82. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  83. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  84. Kelly CP, Cramer CJ, Truhlar DG (2007) Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. J Phys Chem B 111:408–422. https://doi.org/10.1021/jp065403l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang L-P, Wu Q, Voorhis VT (2010) Acid−base mechanism for ruthenium water oxidation catalysts. Inorg Chem 49:4543–4553. https://doi.org/10.1021/ic100075k

    Article  CAS  PubMed  Google Scholar 

  86. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  87. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  88. Becke AD (1993) Density-fuctional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  89. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  90. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036. https://doi.org/10.1063/1.478401

    Article  CAS  Google Scholar 

  91. de Visser SP, Ogliaro F, Gross Z, Shaik S (2001) What is the difference between the manganese porphyrin and corrole analogues of cytochrome P450’s compound I? Chem Eur J 7:4954–4960

    Article  PubMed  Google Scholar 

  92. Ganguly S, McCormick LJ, Conradie J, Gagnon KJ, Sarangi R, Ghosh A (2018) Electronic structure of manganese corroles revisited: X-ray structures, optical and X-ray absorption spectroscopies, and electrochemistry as probes of ligand noninnocence. Inorg Chem 57:9656–9669. https://doi.org/10.1021/acs.inorgchem.8b00537

    Article  CAS  PubMed  Google Scholar 

  93. Zhao H, Pierloot K, Langner EHG, Swarts JC, Conradie J, Ghosh A (2012) Low-energy states of manganese-oxo corrole and corrolazine: multiconfiguration reference ab initio calculations. Inorg Chem 51:4002–4006. https://doi.org/10.1021/ic201972f

    Article  CAS  PubMed  Google Scholar 

  94. Alcover-Fortuny G, Caballol R, Pierloot K, de Graaf C (2016) Role of the imide axial ligand in the spin and oxidation state of manganese corrole and corrolazine complexes. Inorg Chem 55:5274–5280. https://doi.org/10.1021/acs.inorgchem.6b00194

    Article  CAS  PubMed  Google Scholar 

  95. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem Rev 110:949–1017. https://doi.org/10.1021/cr900121s

    Article  CAS  PubMed  Google Scholar 

  96. Cho KB, Hirao H, Chen H, Carvajal MA, Cohen S, Derat E, Thiel W, Shaik S (2008) Compound I in heme thiolate enzymes: a comparative QM/MM study. J Phys Chem A 112:13128–13138. https://doi.org/10.1021/jp806770y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is supported by the grants from National Natural Science Foundation of China (No. 21673286). The computer resources were provided by High-performance Computing Platform of Renmin University of China.

Supporting Information

Calculated electronic energies, zero-point energy corrections, thermal corrections, spin densities, and Cartesian coordinates of all computed species

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhen Lai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical Approval

This study does not require an ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, Y., Yang, Y. et al. Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes. Top Catal 65, 493–504 (2022). https://doi.org/10.1007/s11244-021-01525-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01525-x

Keywords

Navigation