Skip to main content
Log in

Effect of the Reduction Step on the Catalytic Performance of Pd–CeMO2 Based Catalysts (M = Gd, Zr) for Propane Combustion

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of a reduction step on the catalytic activity of Pd supported doped ceria catalysts was investigated for the propane combustion. Two different oxides based on ceria zirconia (CZ), as a reference three-way catalyst support, and Gadolinia doped ceria (GDC), a mixed ionic electronic conductor, have been used to support Pd nanoparticles. The samples were characterized by H2–CO chemisorption, temperature programmed reduction, and XPS. In addition, the reduction step in H2 was in situ observed by environmental transmission electron microscopy. It was found that the catalytic activity of Pd supported on ceria-based supports can be strongly promoted by a reduction step whereas it does not change on alumina. This effect was attributed, in particular on GDC, to the reduction of a surface interaction phase, PdxCeO2−δ, which induces a re-dispersion of metallic Pd nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peng-ont S, Souentie S, Assabumrungrat S, Praserthdam P, Brosda S, Vayenas CG (2013) Electrochemical promotion of propane oxidation over Pd, Ir, and Ru catalyst-electrodes deposited on YSZ. Ionics 19(12):1705–1714. doi:10.1007/s11581-013-0931-0

    Article  CAS  Google Scholar 

  2. Simplício LMT, Brandão ST, Sales EA, Lietti L, Bozon-Verduraz F (2006) Methane combustion over PdO-alumina catalysts: the effect of palladium precursors. Appl Catal B Environ 63(1–2):9–14. doi:10.1016/j.apcatb.2005.08.009

    Article  Google Scholar 

  3. Ciuparu D, Pfefferle L (2001) Methane combustion activity of supported palladium catalysts after partial reduction. Appl Catal A Gen 218(1–2):197–209. doi:10.1016/S0926-860X(01)00643-3

    Article  CAS  Google Scholar 

  4. Eguchi K, Arai H (2001) Low temperature oxidation of methane over Pd-based catalysts—effect of support oxide on the combustion activity. Appl Catal A Gen 222(1–2):359–367. doi:10.1016/S0926-860X(01)00843-2

    Article  CAS  Google Scholar 

  5. Hernández WY, Laguna OH, Centeno MA, Odriozola JA (2011) Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria. J Solid State Chem 184(11):3014–3020. doi:10.1016/j.jssc.2011.09.018

    Article  Google Scholar 

  6. Guimarães AL, Dieguez LC, Schmal M (2003) Surface sites of Pd/CeO2/Al2O3 catalysts in the partial oxidation of propane. J Phys Chem B 107(18):4311–4319. doi:10.1021/jp0270194

    Article  Google Scholar 

  7. Muñoz FF, Cabezas MD, Acuña LM, Leyva AG, Baker RT, Fuentes RO (2011) Structural properties and reduction behavior of novel nanostructured Pd/gadolinia-doped ceria catalysts with tubular morphology. J Phys Chem C 115(17):8744–8752. doi:10.1021/jp200667e

    Article  Google Scholar 

  8. Yang X, Yang L, Lin S, Zhou R (2015) Investigation on properties of Pd/CeO2–ZrO2–Pr2O3 catalysts with different Ce/Zr molar ratios and its application for automotive emission control. J Hazard Mater 285:182–189. doi:10.1016/j.jhazmat.2014.10.062

    Article  CAS  Google Scholar 

  9. Vidal H, Kašpar J, Pijolat M, Colon G, Bernal S, Cordón A, Perrichon V, Fally F (2000) Redox behavior of CeO2–ZrO2 mixed oxides. I. Influence of redox treatments on high surface area catalysts. Appl Catal B Environ 27(1):49–63. doi:10.1016/S0926-3373(00)00138-7

    Article  CAS  Google Scholar 

  10. Salasc S, Perrichon V, Primet M, Mouaddib-Moral N (2002) Titration by oxygen of the spill-over hydrogen adsorbed on ceria–zirconia supported palladium–rhodium catalysts. J Catal 206(1):82–90. doi:10.1006/jcat.2001.3477

    Article  CAS  Google Scholar 

  11. Kamiuchi N, Haneda M, Ozawa M (2015) Propene oxidation over palladium catalysts supported on zirconium rich ceria–zirconia. Catal Today Part A 241:100–106. doi:10.1016/j.cattod.2014.04.004

    Article  CAS  Google Scholar 

  12. Lopez-Gonzalez D, Tsampas MN, Boréave A, Retailleau-Mevel L, Klotz M, Tardivat C, Cartoixa B, Pajot K, Vernoux P (2015) Mixed ionic–electronic conducting catalysts for catalysed gasoline particulate filters. Top Catal 58(18–20):1242–1255. doi:10.1007/s11244-015-0497-3

    Article  CAS  Google Scholar 

  13. Miller JB, Malatpure M (2015) Pd catalysts for total oxidation of methane: support effects. Appl Catal A Gen 495:54–62. doi:10.1016/j.apcata.2015.01.044

    Article  CAS  Google Scholar 

  14. Xin Y, Wang H, Law CK (2014) Kinetics of catalytic oxidation of methane, ethane and propane over palladium oxide. Combust Flame 161(4):1048–1054. doi:10.1016/j.combustflame.2013.10.023

    Article  CAS  Google Scholar 

  15. Colussi S, Trovarelli A, Vesselli E, Baraldi A, Comelli G, Groppi G, Llorca J (2010) Structure and morphology of Pd/Al2O3 and Pd/CeO2/Al2O3 combustion catalysts in Pd–PdO transformation hysteresis. Appl Catal A Gen 390(1–2):1–10. doi:10.1016/j.apcata.2010.09.033

    Article  CAS  Google Scholar 

  16. Monteiro RS, Dieguez LdC, Schmal M (2001) The role of Pd precursors in the oxidation of carbon monoxide over Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts. Catal Today 65(1):77–89. doi:10.1016/S0920-5861(00)00547-2

    Article  CAS  Google Scholar 

  17. Fan J, Wu X, Ran R, Weng D (2005) Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst. Appl Surf Sci 245(1–4):162–171. doi:10.1016/j.apsusc.2004.10.006

    Article  CAS  Google Scholar 

  18. Zhang YW, Zhou J, Wang Z, Liu J, Cen K (2008) Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle. Int J Hydrog Energy 33(9):2211–2217. doi:10.1016/j.ijhydene.2008.02.072

    Article  CAS  Google Scholar 

  19. Slavinskaya EM, Gulyaev RV, Zadesenets AV, Stonkus OA, Zaikovskii VI, Shubin YV, Korenev SV, Boronin AI (2015) Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl Catal B Environ 166–167:91–103. doi:10.1016/j.apcatb.2014.11.015

    Article  Google Scholar 

  20. Scott MS, Waterhouse GIN, Kato K, Chang SLY, Idriss H, Söhnel T (2015) Structural analysis of Rh–Pd/CeO2 catalysts under reductive conditions: an X-ray investigation. Top Catal 58(2–3):123–133. doi:10.1007/s11244-014-0351-z

    Article  CAS  Google Scholar 

  21. Cao Y, Ran R, Wu X, Weng D (2015) A new insight into the effects of barium addition on Pd-only catalysts: Pd-support interface and CO + NO reaction pathway. Appl Catal A Gen 501:17–26. doi:10.1016/j.apcata.2015.04.028

    Article  CAS  Google Scholar 

  22. Derrouiche S, Bianchi D (2005) Experiments and kinetic model regarding the induction period observed during the oxidation by O2 of adsorbed CO species on Pt/Al2O3 catalysts. J Catal 230(2):359–374. doi:10.1016/j.jcat.2004.12.011

    Article  CAS  Google Scholar 

  23. Bourane A, Bianchi D (2001) Oxidation of CO on a Pt/Al2O3 catalyst: from the surface elementary steps to light-off tests: I. Kinetic study of the oxidation of the linear CO species. J Catal 202(1):34–44. doi:10.1006/jcat.2001.3242

    Article  CAS  Google Scholar 

  24. Dulaurent O, Chandes K, Bouly C, Bianchi D (1999) Heat of adsorption of carbon monoxide on a Pd/Al2O3 solid using in situ infrared spectroscopy at high temperatures. J Catal 188(2):237–251. doi:10.1006/jcat.1999.2661

    Article  CAS  Google Scholar 

  25. Dulaurent O, Chandes K, Bouly C, Bianchi D (2000) Heat of adsorption of carbon monoxide on various Pd-containing solids using in situ infrared spectroscopy at high temperatures. J Catal 192(2):273–285. doi:10.1006/jcat.2000.2845

    Article  CAS  Google Scholar 

  26. Dellwig T, Hartmann J, Libuda J, Meusel I, Rupprechter G, Unterhalt H, Freund HJ (2000) Complex model catalysts under UHV and high pressure conditions: CO adsorption and oxidation on alumina-supported Pd particles. J Mol Catal A Chem 162(1–2):51–66. doi:10.1016/S1381-1169(00)00321-6

    Article  CAS  Google Scholar 

  27. Meusel I, Hoffmann J, Hartmann J, Libuda J, Freund HJ (2001) Size dependent reaction kinetics on supported model catalysts: a molecular beam/IRAS study of the CO oxidation on alumina-supported Pd particles. J Phys Chem B 105(17):3567–3576. doi:10.1021/jp003601l

    Article  CAS  Google Scholar 

  28. Cao Y, Ran R, Wu X, Zhao B, Wan J, Weng D (2013) Comparative study of ageing condition effects on Pd/Ce0.5Zr 0.5O2 and Pd/Al2O3 catalysts: catalytic activity, palladium nanoparticle structure and Pd-support interaction. Appl Catal A Gen 457:52–61. doi:10.1016/j.apcata.2013.03.002

    Article  CAS  Google Scholar 

  29. Bernardini A, Gemo N, Biasi P, Canu P, Mikkola JP, Salmi T, Lanza R (2014) Direct synthesis of H2O2 over Pd supported on rare earths promoted zirconia. Catal Today. doi:10.1016/j.cattod.2014.12.033

    Google Scholar 

  30. Seshu Babu N, Lingaiah N, Rajesh G, Siva Sankar Reddy P, Sai Prasad PS (2007) Characterization and reactivity of alumina-supported Pd catalysts for the room-temperature hydrodechlorination of chlorobenzene. J Phys Chem C 111(17):6447–6453. doi:10.1021/jp065866r

    Article  Google Scholar 

  31. Barrera A, Viniegra M, Fuentes S, Díaz G (2005) The role of lanthana loading on the catalytic properties of Pd/Al2O3–La2O3 in the NO reduction with H2. Appl Catal B Environ 56(4):279–288. doi:10.1016/j.apcatb.2004.09.015

    Article  CAS  Google Scholar 

  32. Qiuyan W, Bo Z, Guangfeng LI, Renxian Z (2010) Application of rare earth modified Zr-based ceria–zirconia solid solution in three-way catalyst for automotive emission control (English). Environ Sci Technol 44(10):3870–3875

    Article  Google Scholar 

  33. Shen M, Yang M, Wang J, Wen J, Zhao M, Wang W (2009) Pd/support interface-promoted Pd–Ce0.7Zr0.3O2–Al2O3 automobile three-way catalysts: studying the dynamic oxygen storage capacity and CO, C3H8, and NO conversion. The J Phy Chem C 113(8):3212–3221. doi:10.1021/jp805128u

    Article  CAS  Google Scholar 

  34. Boronin AI, Slavinskaya EM, Danilova IG, Gulyaev RV, Amosov YI, Kuznetsov PA, Polukhina IA, Koscheev SV, Zaikovskii VI, Noskov AS (2009) Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal Today 144(3–4):201–211. doi:10.1016/j.cattod.2009.01.035

    Article  CAS  Google Scholar 

  35. Gulyaev RV, Kardash TY, Malykhin SE, Stonkus OA, Ivanova AS, Boronin AI (2014) The local structure of PdxCe1-xO2-x-[small delta] solid solutions. Phys Chem Chem Phys 16(26):13523–13539. doi:10.1039/c4cp01033g

    Article  CAS  Google Scholar 

  36. Stefanov P, Todorova S, Naydenov A, Tzaneva B, Kolev H, Atanasova G, Stoyanova D, Karakirova Y, Aleksieva K (2015) On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane. Chem Eng J 266:329–338. doi:10.1016/j.cej.2014.12.099

    Article  CAS  Google Scholar 

  37. Gulyaev RV, Stadnichenko AI, Slavinskaya EM, Ivanova AS, Koscheev SV, Boronin AI (2012) In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl Catal A Gen 439–440:41–50. doi:10.1016/j.apcata.2012.06.045

    Article  Google Scholar 

  38. Hoflund GB, Hagelin HAE, Weaver JF, Salaita GN (2003) ELS and XPS study of Pd/PdO methane oxidation catalysts. Appl Surf Sci 205(1–4):102–112. doi:10.1016/S0169-4332(02)01084-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the “Triptic-H” project, partially funded by the French National Research Agency (ANR), ANR-2011-VPTT-003. The authors would like to thank the CLYM for access to the Ly-EtTEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vernoux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Gonzalez, D., Couble, J., Aouine, M. et al. Effect of the Reduction Step on the Catalytic Performance of Pd–CeMO2 Based Catalysts (M = Gd, Zr) for Propane Combustion. Top Catal 59, 1638–1650 (2016). https://doi.org/10.1007/s11244-016-0683-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0683-y

Keywords

Navigation