Skip to main content
Log in

The Chemical-Loop Reforming of Alcohols on Spinel-Type Mixed Oxides: Comparing Ni, Co, and Fe Ferrite vs Magnetite Performances

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ferrospinels with different metals—Fe, Ni, Co, and Cu—were investigated as oxygen ion and electron carrier materials for the chemical-loop reforming of ethanol, aimed at the production of H2 with intrinsic separation from CO and CO2. The materials used showed different behaviours both during the first step of the loop—the reduction of the annealed spinel with ethanol—and the second step—the re-oxidation with steam—as well as with the increasing cycle number. The differences shown were rationalised in terms of redox behaviour, carbon residue accumulation during the cycle, and ability to restore the starting spinel structure during cycling. Mixed ferrospinels showed enhanced reducibility when compared to magnetite; however, since coke accumulation was unavoidable, the best-performing material amongst the materials tested was Co ferrite, which underwent the greatest reduction and was able to maintain it throughout repeated cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cha KS, Kim HS, Yoo BK, Lee YS, Kang KS, Park CS, Kim YH (1801) Int J Hydrogen Energy 2009:34

    Google Scholar 

  2. Chiesa P, Lozza G, Malandrino A, Romano M, Piccolo V (2008) Int J Hydrogen Energy 33:2233

    Article  CAS  Google Scholar 

  3. Cormos CC (2011) Int J Hydrogen Energy 36:5960

    Article  CAS  Google Scholar 

  4. Evdou A, Zaspalis V, Nalbandian L (2008) Int J Hydrogen Energy 33:5554

    Article  CAS  Google Scholar 

  5. Gemmi M, Merlini M, Cornaro U, Ghisletti D, Artioli G (2005) J Appl Crystallogr 38:353

    Article  CAS  Google Scholar 

  6. Kang Z, Wang LW (2003) Adv Mater 15:521

    Article  CAS  Google Scholar 

  7. Kodama T, Shimizu T, Satoh T, Shimizu KI (2003) Energy 28:1055

    Article  CAS  Google Scholar 

  8. Herguido J, Peña JA, Carazo E (2014) Int J Hydrogen Energy 39:14050

    Article  CAS  Google Scholar 

  9. Lorente E, Peña JA, Herguido J (2011) Int J Hydrogen Energy 36:7043

    Article  CAS  Google Scholar 

  10. Bleeker MF, Kersten SRA, Veringa HJ (2007) H. J. Catal. Today 127:278

    Article  CAS  Google Scholar 

  11. Bleeker MF, Veringa HJ, Kersten SRA (2010) Ind Eng Chem Res 49:53

    Article  CAS  Google Scholar 

  12. Bleeker M, Gorter S, Kersten S, Ham L, den Berg H, Veringa H (2010) Clean Technol. Environ Policy 12:125

    Article  CAS  Google Scholar 

  13. Gong F, Ye T, Yuan L, Kan T, Torimoto Y, Yamamoto M, Li Q (2001) Green Chem 2009:11

    Google Scholar 

  14. Campo R, Durán P, Plou J, Herguido J, Peña JA (2013) J Power Sources 242:520

    Article  CAS  Google Scholar 

  15. Cormos CC (2010) Int J Hydrogen Energy 35:2278

    Article  CAS  Google Scholar 

  16. Galvita V, Schröder T, Munder B, Sundmacher K (2008) Int J Hydrogen Energy 33:1354

    Article  CAS  Google Scholar 

  17. Heidebrecht P, Sundmacher K (2009) Chem Eng Sci 64:5057

    Article  CAS  Google Scholar 

  18. Herrer M, Plou J, Durán P, Herguido J, Peña JA (2015) Int J Hydrogen Energy 40:5244

    Article  CAS  Google Scholar 

  19. Li F, Kim HR, Sridhar D, Zeng L, Chen J, Fan L, Wang F (2009) Energy Fuels 23:4182

    Article  CAS  Google Scholar 

  20. Plou J, Durán P, Herguido J, Peña JA (2015) Fuel 140:470

    Article  CAS  Google Scholar 

  21. Plou J, Durán P, Herguido J, Peña JA (2014) Fuel 118:100

    Article  CAS  Google Scholar 

  22. Lee DH, Cha KS, Lee YS, Kang KS, Park CS, Kim YH (2009) Int J Hydrogen Energy 34:1417

    Article  CAS  Google Scholar 

  23. Lorente E, Cai Q, Peña JA, Herguido J, Brandon NP (2009) Int J Hydrogen Energy 34:5554

    Article  CAS  Google Scholar 

  24. Lorente E, Peña JA, Herguido J (2008) Int J Hydrogen Energy 33:615

    Article  CAS  Google Scholar 

  25. Lorente E, Peña JA, Herguido J (2009) J Power Sources 192:224

    Article  CAS  Google Scholar 

  26. Lorente E, Herguido J, Peña JA (2011) Int J Hydrogen Energy 36:13425

    Article  CAS  Google Scholar 

  27. Otsuka K, Yamada C, Kaburagi T, Takenaka S (2003) Int J Hydrogen Energy 28:335

    Article  CAS  Google Scholar 

  28. Pineau A, Kanari N, Gaballah I (2006) Thermochim Acta 447:89

    Article  CAS  Google Scholar 

  29. Plou J, Duran P, Herguido J, Peña JA (2012) Int J Hydrogen Energy 37:6995

    Article  CAS  Google Scholar 

  30. Hui W, Takenaka S, Otsuka K (2006) Int J Hydrogen Energy 31:1732

    Article  Google Scholar 

  31. Otsuka K, Takenaka SJ (2004) Japan Pet Inst 47:377

    Article  CAS  Google Scholar 

  32. Chiron FX, Patience GS (2012) Int J Hydrogen Energy 37:10526

    Article  CAS  Google Scholar 

  33. Peltola P, Tynjälä T, Ritvanen J, Hyppänen T (2014) Energy Convers Manag 87:483

    Article  CAS  Google Scholar 

  34. Mattisson T, Johansson M, Lyngfelt A (2004) Energy Fuels 18:628

    Article  CAS  Google Scholar 

  35. Ozcan H, Dincer I (2014) Energy Convers Manag 85:477

    Article  CAS  Google Scholar 

  36. Choudhary TV, Goodman DW (1999) Catal Lett 59:93

    Article  CAS  Google Scholar 

  37. Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K (2006) J Catal 238:353

    Article  CAS  Google Scholar 

  38. Otsuka K, Mito A, Takenaka S, Yamanaka I (2001) Int J Hydrogen Energy 26:191

    Article  CAS  Google Scholar 

  39. Hurst S (1939) Oil Soap 16:29

    Article  CAS  Google Scholar 

  40. Bleeker MF, Veringa HJ, Kersten SRA (2009) Appl Catal A Gen 357:5

    Article  CAS  Google Scholar 

  41. Svoboda K, Siewiorek A, Baxter D, Rogut J, Pohořelý M (2008) Energy Convers Manag 49:221

    Article  CAS  Google Scholar 

  42. Hormilleja E, Durán P, Plou J, Herguido J, Peña JA (2014) Int J Hydrogen Energy 39:5267

    Article  CAS  Google Scholar 

  43. Romero E, Soto R, Durán P, Herguido J, Peña JA (2012) Int J Hydrogen Energy 37:6978

    Article  CAS  Google Scholar 

  44. Takenaka S, Hanaizumi N, Son VTD, Otsuka K (2004) J Catal 228:405

    Article  CAS  Google Scholar 

  45. Urasaki K, Tanimoto N, Hayashi T, Sekine Y, Kikuchi E, Matsukata M (2005) Appl Catal A Gen 288:143

    Article  CAS  Google Scholar 

  46. Kang KS, Kim CH, Bae KK, Cho WC, Kim WJ, Kim YH, Kim SH, Park CS (2010) Int J Hydrogen Energy 35:568

    Article  CAS  Google Scholar 

  47. Kang KS, Kim CH, Cho WC, Bae KK, Woo SW, Park CS (2008) Int J Hydrogen Energy 33:4560

    Article  CAS  Google Scholar 

  48. Takenaka S, Son VTD, Otsuka K (2004) Energy Fuels 18:820

    Article  CAS  Google Scholar 

  49. Kodama T, Watanabe Y, Miura S, Sato M, Kitayama Y (1996) Energy 21:1147

    Article  CAS  Google Scholar 

  50. Peña JA, Lorente E, Romero E, Herguido J (2006) Catal Today 116:439

    Article  Google Scholar 

  51. Tamaura Y, Kojima N, Hasegawa N, Inoue M, Uehara R, Gokon N, Kaneko H (2001) Int J Hydrogen Energy 26:917

    Article  CAS  Google Scholar 

  52. Kodama T, Gokon N (2007) Chem Rev 107:4048

    Article  CAS  Google Scholar 

  53. Fresno F, Fernández-Saavedra R, Gómez-Mancebo MB, Vidal A, Sánchez M, Rucandio MI, Quejido AJ, Romero M (2009) Int J Hydrogen Energy 34:2918

    Article  CAS  Google Scholar 

  54. Fresno F, Yoshida T, Gokon N, Fernández-Saavedra R, Kodama T (2010) Int J Hydrogen Energy 35:8503

    Article  CAS  Google Scholar 

  55. Han SB, Kang TB, Joo OS, Jung KD (2007) Sol Energy 81:623

    Article  CAS  Google Scholar 

  56. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  57. Inoue M, Hasegawa N, Uehara R, Gokon N, Kaneko H, Tamaura Y (2004) Sol Energy 76:309

    Article  CAS  Google Scholar 

  58. Kaneko H, Gokon N, Hasegawa N, Tamaura Y (2005) Energy 30:2171

    Article  CAS  Google Scholar 

  59. Kaneko H, Yokoyama T, Fuse A, Ishihara H, Hasegawa N, Tamaura Y (2006) Int J Hydrogen Energy 31:2256

    Article  CAS  Google Scholar 

  60. Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N (2005) Sol Energy 78:623

    Article  CAS  Google Scholar 

  61. Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI (2002) Sol Energy 73:363

    Article  CAS  Google Scholar 

  62. Tamaura Y, Kaneko H (2005) Sol Energy 78:616

    Article  CAS  Google Scholar 

  63. Manova E, Tsoncheva T, Estournès C, Paneva D, Tenchev K, Mitov I, Petrov L (2006) Appl Catal A Gen 300:170

    Article  CAS  Google Scholar 

  64. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993

    Article  CAS  Google Scholar 

  65. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  66. Hohn KL, Lin YC (2009) ChemSusChem 2:927

    Article  CAS  Google Scholar 

  67. Llorca J, de la Piscina PR, Sales J, Homs N (2001) Chem Commun 7:641

    Article  Google Scholar 

  68. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  Google Scholar 

  69. Abdelkader A, Daly H, Saih Y, Morgan K, Mohamed MA, Halawy SA, Hardacre C (2013) Int J Hydrogen Energy 38:8263

    Article  CAS  Google Scholar 

  70. Crocellà V, Cavani F, Cerrato G, Cocchi S, Comito M, Magnacca G, Morterra C (2012) J Phys Chem C 116:14998

    Article  Google Scholar 

  71. Cocchi S, Mari M, Cavani F, Millet JMM (2014) Appl Catal B Environ 152–153:250

    Article  Google Scholar 

  72. Trevisanut C, Bosselet F, Cavani F, Millet JMM (2015) Catal Sci Technol 5:1280

    Article  CAS  Google Scholar 

  73. Trevisanut C, Mari M, Millet J-MM, Cavani F (2015) Int J Hydrogen Energy 40:5264

    Article  CAS  Google Scholar 

  74. Ochoa JV, Trevisanut C, Millet J-MM, Busca G, Cavani F (2013) J Phys Chem C 117:23908

    Article  CAS  Google Scholar 

  75. Millet JMM, Virely C, Forissier M, Bussiere P, Vedrine JC (1989) Hyperfine Interac 46:619

    Article  Google Scholar 

  76. Ramadan W, Zaki MI, Fouad NE, Mekhemer GAH (2014) J Magn Magn Mater 355:246

    Article  CAS  Google Scholar 

  77. Kameoka S, Tanabe T, Tsai AP (2010) Appl Catal A Gen 375:163

    Article  CAS  Google Scholar 

  78. Tan X, Li G, Zhao Y, Hu C (2010) J Alloys Compd 493:55

    Article  CAS  Google Scholar 

  79. Sawatsky GA, van der Woude F, Morrish AH (1969) Phys Rev 187:747

    Article  Google Scholar 

  80. Sawatzky GA (1968) J Appl Phys 39:1204

    Article  CAS  Google Scholar 

  81. Bachari K, Millet JMM, Bonville P, Figueras F, Cherifi O (2007) J Catal 249:52

    Article  CAS  Google Scholar 

  82. Goya GF, Rechenberg HR (1001) Nanostructured Mater 1998:10

    Google Scholar 

Download references

Acknowledgments

“Fondation Tuck”, Rueil-Malmaison (France) is gratefully acknowledged for financial support (Enerbio project, 2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Marc M. Millet or Fabrizio Cavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisanut, C., Vozniuk, O., Mari, M. et al. The Chemical-Loop Reforming of Alcohols on Spinel-Type Mixed Oxides: Comparing Ni, Co, and Fe Ferrite vs Magnetite Performances. Top Catal 59, 1600–1613 (2016). https://doi.org/10.1007/s11244-016-0681-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0681-0

Keywords

Navigation