Skip to main content
Log in

A Comparative Catalyst Evaluation for the Selective Oxidative Esterification of Furfural

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalysts based on gold or other metals on different supports were studied in the selective oxidative esterification of furfural with methanol to methyl 2-furoate. Methyl 2-furoate can be used in specialty fragrances, a high added-value application. Catalyst evaluation and selection were performed using the Avantium quick catalyst screening (QCS) platform using industrially relevant conditions. The best performances were exclusively obtained with gold based catalyst supported on ceria or titania, though these catalysts showed rather poor behavior in tests with a different furfural to methanol ratio. Selected gold catalysts were studied subsequently in a conventional lab-scale autoclave under reaction conditions closer to those commonly applied in literature and effects of support type and preparation were included. For each of the two testing conditions a different catalyst was identified as the most optimal, which is explained by the strong chemisorption of furfural on the Au surface. Au/ZrO2 catalysts, identified as optimal in QCS tests, show also high performances (about 99 % yield) in autoclave tests, although a different preparation was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos IK, Papanikolaou S, Kwan TH, Lin CSK (2014) Chem. Soc. Rev. 43:2587–2627

    Article  CAS  Google Scholar 

  2. Zhang Y-HP (2011) Process Biochem 46:2091–2110

    Article  CAS  Google Scholar 

  3. Zhang Y-HP (2013) Energy Sci. Eng. 1:27–41

    Article  CAS  Google Scholar 

  4. Chen H-G, Zhang Y-HP (2015) Renew. Sustain. Energy Rev. 47:117–132

    Article  CAS  Google Scholar 

  5. Lanzafame P, Centi G, Perathoner S (2014) Chem. Soc. Rev. 43:7562–7580

    Article  CAS  Google Scholar 

  6. Abate S, Lanzafame P, Perathoner S, Centi G (2015) ChemSusChem 8:2854–2866

    Article  CAS  Google Scholar 

  7. Lanzafame P, Centi G, Perathoner S (2014) Catal. Today 234:2–12

    Article  CAS  Google Scholar 

  8. Centi G, Lanzafame P, Perathoner S (2011) Catal. Today 167:14–30

    Article  CAS  Google Scholar 

  9. de Jong E, Dam MA, Sipos L, Gruter G-JM, Symp ACS (2012) Series 1105:1–13

    Google Scholar 

  10. Eerhart AJJE, Huijgen WJJ, Grisel RJH, van der Waal JC, de Jong E, de Sousa Dias A, Faaij APC, Patel MK (2014) RSC Adv. 4:3536–3549

    Article  CAS  Google Scholar 

  11. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Polym. Chem. 6:5963–6098

    Google Scholar 

  12. Imhof P, van der Waal JC (2013) Catalytic Process Development for Renewable Materials. Wiley, Oxford

    Book  Google Scholar 

  13. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Chem. Rev. 113:1499–1597

    Article  Google Scholar 

  14. Takagaki A, Nishimura S, Ebitani K (2012) Catal. Surv. Asia 16:164–182

    Article  CAS  Google Scholar 

  15. Delidovich I, Leonhard K, Palkovits R (2014) Energy Environ. Sci. 7:2803–2830

    Article  CAS  Google Scholar 

  16. Cai CM, Zhang T, Kumar R, Wyman CE (2014) J. Chem. Technol. Biotechnol. 89:2–10

    Article  CAS  Google Scholar 

  17. Dutta S, De S, Saha B, Alam MdI (2012) Catal. Sci. Technol. 2:2025–2036

    Article  CAS  Google Scholar 

  18. Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) ChemSusChem 5:150–166

    Article  CAS  Google Scholar 

  19. Jin X, Shen J, Yan W, Zhao M, Thapa PS, Subramaniam B, Chaudhari RV (2015) ACS Catal. 5:6545–6558

    Article  CAS  Google Scholar 

  20. Liu Y, Luo C, Liu H (2012) Angew. Chem. Int. Ed. 51:3249–3253

    Article  CAS  Google Scholar 

  21. Centi G (2013) S Perathoner. In: Triantafyllidis K, Lappas A, Stöcker M (eds) The Role of Catalysis for the Sustainable Production of Bio-fuels and Biochemicals, vol Ch. 16. Oxford, Elsevier, pp 529–555

    Chapter  Google Scholar 

  22. Manzoli M, Menegazzo F, Signoretto M, Cruciani G, Pinna F (2015) J. Catal. 330:465–473

    Article  CAS  Google Scholar 

  23. Menegazzo F, Signoretto M, Marchese D, Pinna F, Manzoli M (2015) J Catal 326:1–8

    Article  CAS  Google Scholar 

  24. Menegazzo F, Fantinel T, Signoretto M, Pinna F, Manzoli M (2014) J. Catal. 319:61–70

    Article  CAS  Google Scholar 

  25. Menegazzo F, Signoretto M, Pinna F, Manzoli M, Aina V, Cerrato G, Boccuzzi F (2014) J. Catal. 309:241–247

    Article  CAS  Google Scholar 

  26. Signoretto M, Menegazzo F, Contessotto L, Pinna F, Manzoli M, Boccuzzi F (2013) Appl. Catal. B Environ. 129:287–293

    Article  CAS  Google Scholar 

  27. Pinna F, Olivo A, Trevisan V, Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F (2013) Catal. Today 203:196–201

    Article  CAS  Google Scholar 

  28. Casanova O, Iborra S, Corma A (2009) J. Catal. 265:109–116

    Article  CAS  Google Scholar 

  29. Li Y, Wang L, Yan R, Han J, Zhang S (2015) Catal. Sci. Technol. 5:3682–3692

    Article  CAS  Google Scholar 

  30. Mondal P, Salam N, Mondal A, Ghosh K, Tuhina K, Sk M (2015) Islam. J. Colloid Interface Sci. 459:97–106

    Article  CAS  Google Scholar 

  31. Smolentseva E, Costa VV, Cotta RF, Simakova O, Beloshapkin S, Gusevskaya EV, Simakov A (2015) Chem. Cat. Chem. 7:1011–1017

    CAS  Google Scholar 

  32. Wan X, Deng W, Zhang Q, Wang Y (2014) Catal. Today 233:147–154

    Article  CAS  Google Scholar 

  33. Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) ACS Catal. 3:1845–1849

    Article  CAS  Google Scholar 

  34. Hashmi ASK, Lothschuetz C, Ackermann M, Doepp R, Anantharaman S, Marchetti B, Bertagnolli H, Rominger F (2010) Chem. A Eur. J. 16:8012–8019

    Article  CAS  Google Scholar 

  35. Marsden C, Taarning E, Hansen D, Johansen L, Klitgaard SK, Egeblad K, Christensen CH (2008) Green Chem. 10:168–170

    Article  CAS  Google Scholar 

  36. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) ChemSusChem 1:75–78

    Article  CAS  Google Scholar 

  37. Ma Z, Dai S (2011) ACS Catal. 1:805–818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was realized in the frame of the EU project “Eco-friendly biorefinery fine chemicals from CO2 photocatalytic reduction” (Eco2CO2) (Project 309701), which is gratefully acknowledged. The EU Marie Curie IAPP (Industry-Academia Partnerships and Pathways) project “Biopolymers and Biofuels from Furan based Building Blocks” (BIOFUR, project 324292) of collaboration between Avantium and the University of Messina is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Centi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ampelli, C., Centi, G., Genovese, C. et al. A Comparative Catalyst Evaluation for the Selective Oxidative Esterification of Furfural. Top Catal 59, 1659–1667 (2016). https://doi.org/10.1007/s11244-016-0675-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0675-y

Keywords

Navigation