Skip to main content

Advertisement

Log in

Photocatalytic Reduction of CO2 with Water into Methanol and Ethanol Using Graphene Derivative–TiO2 Composites: Effect of pH and Copper(I) Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Fuels derived from CO2 can contribute to neutralize the carbon balance in the atmosphere and can be converted into easily transportable liquid chemicals, such as methanol (MeOH) or ethanol (EtOH). In this work, a composite prepared from graphene oxide (GO) and titanium dioxide (TiO2) is applied to the photocatalytic water reduction of CO2 into renewable fuels under UV/vis light irradiation. The pH was identified as a key variable towards selective MeOH formation. The prepared GO–TiO2 composite exhibited superior photocatalytic activity for EtOH production (144.7 μmol g−1 h−1) at pH 11.0 and for MeOH production (47.0 μmol g−1 h−1) at pH 4.0. The effect of copper species in the GO–TiO2 composite is also assessed and its influence on the photocatalytic reaction inferred. The photocatalysts prepared with copper nitrate as copper precursor exhibited the highest rate of MeOH production at pH 11.0. Accordingly, a conceptual scheme in which the photogenerated electrons are used to reduce CO2 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yi Q, Li W, Feng J, Xie K (2015) Carbon cycle in advanced coal chemical engineering. Chem Soc Rev 44:5409–5445

    Article  CAS  Google Scholar 

  2. Olivier J, Janssens-Maenhout G, Muntean M, Peters J (2015) Trends in global CO2 emissions: 2015 report. PBL Netherlands Environmental Assessment Agency, The Hague, European Commission, Joint Research Centre, Ispra

  3. Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc–copper–M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279:123–135

    Article  CAS  Google Scholar 

  4. Pérez-Cadenas AF, Ros CH, Morales-Torres S, Pérez-Cadenas M, Kooyman PJ, Moreno-Castilla C, Kapteijn F (2013) Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons. Carbon 56:324–331

    Article  Google Scholar 

  5. Tran PD, Wong LH, Barber J, Loo JSC (2012) Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci 5:5902–5918

    Article  CAS  Google Scholar 

  6. Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963

    Article  CAS  Google Scholar 

  7. Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175

    Article  CAS  Google Scholar 

  8. Sun P, Zheng F, Zhu M, Song Z, Wang K, Zhong M, Wu D, Little RB, Xu Z, Zhu H (2014) Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation–π interactions. ACS Nano 8:850–859

    Article  CAS  Google Scholar 

  9. Perathoner S, Centi G (2014) CO2 recycling: a key strategy to introduce green energy in the chemical production chain. ChemSusChem 7:1274–1282

    Article  CAS  Google Scholar 

  10. Sun H, Wang S (2014) Research advances in the synthesis of nanocarbon-based photocatalysts and their applications for photocatalytic conversion of carbon dioxide to hydrocarbon fuels. Energy Fuels 28:22–36

    Article  CAS  Google Scholar 

  11. Marszewski M, Cao S, Yu J, Jaroniec M (2015) Semiconductor-based photocatalytic CO2 conversion. Mater Horiz 2:261–278

    Article  CAS  Google Scholar 

  12. Mao J, Li K, Peng T (2013) Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal Sci Technol 3:2481–2498

    Article  CAS  Google Scholar 

  13. Ola O, Maroto-Valer MM (2015) Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C 24:16–42

    Article  CAS  Google Scholar 

  14. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408

    Article  CAS  Google Scholar 

  15. Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217–9233

    Article  CAS  Google Scholar 

  16. Pastrana-Martínez LM, Morales-Torres S, Papageorgiou SK, Katsaros FK, Romanos GE, Figueiredo JL, Faria JL, Falaras P, Silva AMT (2013) Photocatalytic behaviour of nanocarbon–TiO2 composites and immobilization into hollow fibres. Appl Catal B 142–143:101–111

    Article  Google Scholar 

  17. Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Figueiredo JL, Faria JL, Falaras P, Silva AMT (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B 123–124:241–256

    Article  Google Scholar 

  18. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT (2012) Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res 19:3676–3687

    Article  CAS  Google Scholar 

  19. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731

    Article  CAS  Google Scholar 

  20. Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z (2012) Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv Funct Mater 22:1215–1221

    Article  CAS  Google Scholar 

  21. Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416

    Article  CAS  Google Scholar 

  22. Fotiou T, Triantis TM, Kaloudis T, Pastrana-Martínez LM, Likodimos V, Falaras P, Silva AMT, Hiskia A (2013) Photocatalytic degradation of microcystin-LR and off-odor compounds in water under UV-A and solar light with a nanostructured photocatalyst based on reduced graphene oxide–TiO2 composite. identification of intermediate products. Ind Eng Chem Res 52:13991–14000

    Article  CAS  Google Scholar 

  23. Wang P-Q, Bai Y, Luo P-Y, Liu J-Y (2013) Graphene-WO3 nanobelt composite: elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels. Catal Commun 38:82–85

    Article  CAS  Google Scholar 

  24. Kumar P, Mungse HP, Cordier S, Boukherroub R, Khatri OP, Jain SL (2015) Hexamolybdenum clusters supported on graphene oxide: visible-light induced photocatalytic reduction of carbon dioxide into methanol. Carbon 94:91–100

    Article  CAS  Google Scholar 

  25. Wang W-N, Soulis J, Yang YJ, Biswas P (2014) Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual Res 14:533–549

    CAS  Google Scholar 

  26. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26:4607–4626

    Article  CAS  Google Scholar 

  27. Slamet Hosna W, Nasution Ezza Purnama, Riyani Kapti, Gunlazuardi J (2009) Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts. World Appl Sci J 6:112–122

    CAS  Google Scholar 

  28. Slamet Nasution HW, Purnama E, Kosela S, Gunlazuardi J (2005) Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319

    Article  CAS  Google Scholar 

  29. Kočí K, Matějů K, Obalová L, Krejčíková S, Lacný Z, Plachá D, Čapek L, Hospodková A, Šolcová O (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B 96:239–244

    Article  Google Scholar 

  30. Liu E, Kang L, Wu F, Sun T, Hu X, Yang Y, Liu H, Fan J (2014) Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 9:61–70

    Article  CAS  Google Scholar 

  31. Truong QD, Liu J-Y, Chung C-C, Ling Y-C (2012) Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal Commun 19:85–89

    Article  CAS  Google Scholar 

  32. Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340

    Article  CAS  Google Scholar 

  33. Li Y, Wang W-N, Zhan Z, Woo M-H, Wu C-Y, Biswas P (2010) Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B 100:386–392

    Article  CAS  Google Scholar 

  34. Ishitani Osamu, Inoue C, Suzuki Y, Ibusuki T (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A 72:269–271

    Article  CAS  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  36. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  37. Pastrana-Martinez LM, Morales-Torres S, Carabineiro SAC, Buijnsters JG, Faria JL, Figueiredo JL, Silva AMT (2013) Nanodiamond–TiO2 composites for heterogeneous photocatalysis. Chempluschem 78:801–807

    Article  CAS  Google Scholar 

  38. Wu JCS, Lin H-M (2005) Photo reduction of CO2 to methanol via TiO2 photocatalyst. Int J Photoenergy 7:115–119

    Article  CAS  Google Scholar 

  39. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  40. Ferro-García MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C (1998) Adsorption of humic substances on activated carbon from aqueous solutions and their effect on the removal of Cr(III) Ions. Langmuir 14:1880–1886

    Article  Google Scholar 

  41. Rivera-Utrilla J, Bautista-Toledo I, Ferro-García MA, Moreno-Castilla C (2001) Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol 76:1209–1215

    Article  CAS  Google Scholar 

  42. Khorsand Zak A, Abd. Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13:251–256

    Article  CAS  Google Scholar 

  43. Gonell F, Puga AV, Julián-López B, García H, Corma A (2016) Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl Catal B 180:263–270

    Article  CAS  Google Scholar 

  44. Navas J, Sanchez-Coronilla A, Aguilar T, Hernandez NC, de los Santos DM, Sanchez-Marquez J, Zorrilla D, Fernandez-Lorenzo C, Alcantara R, Martin-Calleja J (2014) Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Phys Chem Chem Phys 16:3835–3845

    Article  CAS  Google Scholar 

  45. Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H (2008) Effect of surface species on Cu–TiO2 photocatalytic activity. Appl Surf Sci 254:2569–2574

    Article  CAS  Google Scholar 

  46. Silva CG, Faria JL (2010) Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl Catal B 101:81–89

    Article  CAS  Google Scholar 

  47. Wang C, Chen Z, Jin H, Cao C, Li J, Mi Z (2014) Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J Mater Chem A 2:17820–17827

    Article  CAS  Google Scholar 

  48. Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J Phys Chem C 114:22181–22189

    Article  CAS  Google Scholar 

  49. Sampaio MJ, Pastrana-Martinez LM, Silva AMT, Buijnsters JG, Han C, Silva CG, Carabineiro SAC, Dionysiou DD, Faria JL (2015) Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Adv 5:58363–58370

    Article  CAS  Google Scholar 

  50. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B: Condens Matter 38:11322–11330

    Article  CAS  Google Scholar 

  51. Tseng IH, Wu JCS, Chou H-Y (2004) Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440

    Article  CAS  Google Scholar 

  52. Tahir M, Amin NS (2013) Recycling of carbon dioxide to renewable fuels by photocatalysis: prospects and challenges. Renew Sustain Energy Rev 25:560–579

    Article  CAS  Google Scholar 

  53. Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976

    Article  Google Scholar 

  54. Yang X, Xiao T, Edwards PP (2011) The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting. Int J Hydrogen Energy 36:6546–6552

    Article  CAS  Google Scholar 

  55. Abou Asi M, He C, Su M, Xia D, Lin L, Deng H, Xiong Y, Qiu R, X-z Li (2011) Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal Today 175:256–263

    Article  CAS  Google Scholar 

  56. Zhang Q, Lin C-F, Chen B-Y, Ouyang T, Chang C-T (2015) Deciphering visible light photoreductive conversion of CO2 to formic acid and methanol using waste prepared material. Environ Sci Technol 49:2405–2417

    Article  CAS  Google Scholar 

  57. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene. J Phys Chem C 112:15704–15707

    Article  CAS  Google Scholar 

  58. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B-L, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112:13442–13446

    Article  CAS  Google Scholar 

  59. Mao J, Peng T, Zhang X, Li K, Ye L, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3:1253–1260

    Article  CAS  Google Scholar 

  60. Ola O, Maroto-Valer M, Liu D, Mackintosh S, Lee C-W, Wu JCS (2012) Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation. Appl Catal B 126:172–179

    Article  CAS  Google Scholar 

  61. Kyriacou G, Anagnostopoulos A (1992) An international journal devoted to all aspects of electrode kinetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry electrochemical reduction of CO2 at Cu + Au electrodes. J Electroanal Chem 328:233–243

    Article  CAS  Google Scholar 

  62. Smith BD, Irish DE, Kedzierzawski P, Augustynski J (1997) A surface enhanced raman scattering study of the intermediate and poisoning species formed during the electrochemical reduction of CO2 on copper. J Electrochem Soc 144:4288–4296

    Article  CAS  Google Scholar 

  63. Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Falaras P, Figueiredo JL, Faria JL, Silva AMT (2014) Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites. Appl Catal B 158–159:329–340

    Article  Google Scholar 

  64. Nakaoka K, Ueyama J, Ogura K (2004) Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J Electrochem Soc 151:C661–C665

    Article  CAS  Google Scholar 

  65. Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed 52:5776–5779

    Article  CAS  Google Scholar 

  66. Dimitrijevic NM, Vijayan BK, Poluektov OG, Rajh T, Gray KA, He H, Zapol P (2011) Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J Am Chem Soc 133:3964–3971

    Article  CAS  Google Scholar 

  67. Anpo M, Chiba K (1992) Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal 74:207–212

    Article  CAS  Google Scholar 

  68. Paul J, Hoffmann FM (1988) CO2 conversion and oxalate stability on alkali promoted metal surfaces: sodium modified Al(100). Catal Lett 1:445–455

    Article  CAS  Google Scholar 

  69. Hou Y, Li X, Zou X, Quan X, Chen G (2009) Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ Sci Technol 43:858–863

    Article  CAS  Google Scholar 

  70. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  CAS  Google Scholar 

  71. Zhang J, Zhu H, Zheng S, Pan F, Wang T (2009) TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. ACS Appl Mater Interfaces 1:2111–2114

    Article  CAS  Google Scholar 

  72. Luo Z, Jiang H, Li D, Hu L, Geng W, Wei P, Ouyang P (2014) Improved photocatalytic activity and mechanism of Cu2O/N-TiO2 prepared by a two-step method. RSC Adv 4:17797–17804

    Article  CAS  Google Scholar 

  73. Sun M, Fang Y, Wang Y, Sun S, He J, Yan Z (2015) Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. J Alloy Compd 650:520–527

    Article  CAS  Google Scholar 

  74. Morales J, Espinos JP, Caballero A, Gonzalez-Elipe AR, Mejias JA (2005) XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles. J Phys Chem B 109:7758–7765

    Article  CAS  Google Scholar 

  75. Kakumoto T (1995) A theoretical study for the CO2 hydrogenation mechanism on Cu/ZnO catalyst. Energy Convers Manag 36:661–664

    Article  CAS  Google Scholar 

  76. Sinatra L, LaGrow AP, Peng W, Kirmani AR, Amassian A, Idriss H, Bakr OM (2015) A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction? J Catal 322:109–117

    Article  CAS  Google Scholar 

  77. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186

    Article  CAS  Google Scholar 

  78. Yang C-C, Yu Y-H, van der Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? J Am Chem Soc 132:8398–8406

    Article  CAS  Google Scholar 

  79. Liu D, Fernández Y, Ola O, Mackintosh S, Maroto-Valer M, Parlett CMA, Lee AF, Wu JCS (2012) On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal Commun 25:78–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national through FCT—Fundação para a Ciência e a Tecnologia. LMPM and AMTS acknowledge the FCT Investigator Programme (IF/01248/2014 and IF/01501/2013, respectively), with financing from the European Social Fund and the Human Potential Operational Programme. Authors are thankful to Dr. Carlos M. Sá (CEMUP) for assistance with XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Pastrana-Martínez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastrana-Martínez, L.M., Silva, A.M.T., Fonseca, N.N.C. et al. Photocatalytic Reduction of CO2 with Water into Methanol and Ethanol Using Graphene Derivative–TiO2 Composites: Effect of pH and Copper(I) Oxide. Top Catal 59, 1279–1291 (2016). https://doi.org/10.1007/s11244-016-0655-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0655-2

Keywords

Navigation