Skip to main content

Advertisement

Log in

Furfural Hydrogenation to Furfuryl Alcohol over Bimetallic Ni–Cu Sol–Gel Catalyst: A Model Reaction for Conversion of Oxygenates in Pyrolysis Liquids

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

High metal loading NiCu-based catalyst of Picula™ series produced by sol–gel technique was applied to furfural hydrogenation in the presence of hydrogen. This reaction represents the stabilization of pyrolysis oil that involves the selective reduction of aldehydes and ketones to alcohols and unsaturated C–C double bonds of pyrolysis oils components. The catalysts were pre-reduced at 250 and 300 °C. According to XRD analysis results, copper is mainly in the metallic state, and Ni is mostly in the form of oxide and silicate. XPS measurements reveal that hydrogen treatment at 250 °C leads to the partial reduction of Ni to the metallic state (6 %) while further reduction at 300 °C leads to an increase in this proportion up to 39 %. A 100 % selectivity towards furfuryl alcohol was achieved at 130 °C and 5 MPa of hydrogen in a batch reactor using decyl alcohol as a solvent. In the experiments with i-propanol as a solvent at 110–170 °C the main product was furfuryl alcohol, but minor components traced back were tetrahydrofurfuryl alcohol, 2-methylfuran and isopropyl furfuryl ether. The lower catalyst reduction temperature promotes the formation of isopropyl ester, while a higher reduction temperature favors further furfuryl alcohol hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. PDF No. 47-1049.

References

  1. Mortensen P, Grunwaldt J-D, Jensen P, Knudsen K, Jensen A (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19

    Article  CAS  Google Scholar 

  2. Zacher A, Olarte M, Santosa D, Elliott D, Jones S (2014) A review and perspective of recent bio-oil hydrotreating research. Green Chem 16:491–515

    Article  CAS  Google Scholar 

  3. Yakovlev V, Khromova S, Sherstyuk O, Dundich V, Ermakov D, Novopashina V, Lebedev M, Bulavchenko O, Parmon V (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144:362–366

    Article  CAS  Google Scholar 

  4. Elliott D, Neuenschwander G, Bridgwater A, Boocock D (eds) (1996) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 611–621

    Google Scholar 

  5. Mercader FDM, Groeneveld M, Kersten S, Way N, Schaverien C, Hogendoorn J (2010) Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B 96:57–66

    Article  Google Scholar 

  6. Yin W, Venderbosch RH, Bottari G, Krawzcyk K, Barta K, Heeres HJ (2015) Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide. Appl Catal B 166–167:56–65

    Article  Google Scholar 

  7. Bhogeswararao S, Srinivas D (2015) Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J Catal 327:65–77

    Article  CAS  Google Scholar 

  8. Taylor M, Durndell L, Isaacs M, Parlett C, Wilson K, Lee A, Kyriakou G (2016) Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl Catal B 180:580–585

    Article  CAS  Google Scholar 

  9. Merlo A, Vetere V, Ruggera J, Casella M (2009) Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. Catal Commun 19:1665–1669

    Article  Google Scholar 

  10. Nagaraja B, Padmasri A, David Raju B, Rama Rao K (2007) Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts. J Mol Catal A 265:90–97

    Article  CAS  Google Scholar 

  11. Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Vapor phase hydrogenation of furfural to furfuryl alcohol over environmentally friendly Cu–Ca/SiO2 catalyst. Catal Commun 6:633–637

    Article  CAS  Google Scholar 

  12. Villaverde M, Bertero N, Garetto T, Marchi A (2013) Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal Today 213:87–92

    Article  CAS  Google Scholar 

  13. Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108

    Article  CAS  Google Scholar 

  14. Vargas-Hernández D, Rubio-Caballero J, Santamaría-González J, Moreno-Tost R, Mérida-Robles J, Pérez-Cruz M, Jiménez-López A, Hernández-Huesca R, Maireles-Torres P (2014) Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. J Mol Catal A 383–384:106–113

    Article  Google Scholar 

  15. Román-Leshkov Y, Barrett C, Liu Z, Dumesic J (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  Google Scholar 

  16. Deutsch K, Shanks B (2012) Active species of copper chromite catalyst in C-O hydrogenolysis of 5-methylfurfuryl alcohol. J Catal 285:235–241

    Article  CAS  Google Scholar 

  17. Lukes R, Wilson C (1951) Reactions of furan compounds. XI. side chain reactions of furfural and furfuryl alcohol over nickel-copper and iron-copper catalysts. J Am Chem Soc 9:3–7

    Google Scholar 

  18. Pang S, Love N, Medlin J (2014) Synergistic effects of alloying and thiolate modification in furfural Hydrogenation over Cu-based catalysts. J Phys Chem Lett 5:4110–4114

    Article  CAS  Google Scholar 

  19. Heeres E, Ardiyanti A, Kloekhorst A, Wing Y, Khromova SA (2013) Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil In: Proceedings of BioEnergy IV: innovations in biomass conversion for heat, power, fuels and chemicals, Otranto, Italy, 9–14 June 2013

  20. Garcia-Perez M, Meier D (2014) Engineering Conferences International (ECI): New York

  21. Bykova M, Ermakov D, Kaichev V, Bulavchenko O, Saraev A, Lebedev M, Yakovlev V (2012) Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: guaiacol hydrodeoxygenation study. Appl Catal B 113–114:296–307

    Article  Google Scholar 

  22. Ermakova M, Ermakov D (2003) High-loaded nickel–silica catalysts for hydrogenation, prepared by sol–gel: route: structure and catalytic behavior. Appl Catal A 245:277–288

    Article  CAS  Google Scholar 

  23. Pat. WO 2012030215 A1, 08.03.2012

  24. Scofield J (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  25. Shirley D (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714

    Article  Google Scholar 

  26. Fairley N (2016) http://www.casaxps.com. Accessed 14 Jan 2016

  27. Liu D, Zemlyanov D, Wu T, Lobo-Lapidus R, Dumesic J, Miller J, Marshall C (2013) Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde. J Catal 299:336–345

    Article  CAS  Google Scholar 

  28. Kosova N, Devyatkina E, Kaichev V (2007) Mixed layered Ni–Mn–Co hydroxides: crystal structure, electronic state of ions, and thermal decomposition. J Power Sources 174:735–740

    Article  CAS  Google Scholar 

  29. Li C, Proctor A, Hercules D (1984) Curve fitting analysis of ESCA Ni 2p spectra of nickel-oxygen compounds and Ni/Al2O3 catalysts. Appl Spectrosc 38:880–886

    Article  CAS  Google Scholar 

  30. Batista J, Pintar F, Mandrino D, Jenko M, Martin V (2001) XPS and TPR examinations of γ-alumina-supported Pd-Cu catalysts. Appl Catal A 206:113–124

    Article  CAS  Google Scholar 

  31. Bukhtiyarov V, Kaichev V, Prosvirin I (2005) X-ray photoelectron spectroscopy as a tool for in situ study of the mechanisms of heterogeneous catalytic reactions. Top Catal 32:3–15

    Article  CAS  Google Scholar 

  32. Richter M, Fait M, Eckelt R, Scneider M, Radnik J, Heidemann D, Fricke R (2007) Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J Catal 245:11–24

    Article  CAS  Google Scholar 

  33. Wöllner A, Lange F, Schmelz H, Knözinger H (1993) Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl Catal A 94:181–203

    Article  Google Scholar 

  34. Moretti G (1995) Auger parameter and wagner plot in the characterization of chemical states: initial and final state effects. J Electron Spectrosc Relat Phenom 76:365–370

    Article  CAS  Google Scholar 

  35. Nagaraja B, Padmasri A, Seetharamulu P, Hari Prasad Reddy K, David Raju B, Rama Rao K (2007) A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route—combination of furfural hydrogenation and cyclohexanol dehydrogenation. J Mol Catal A 278:29–37

    Article  CAS  Google Scholar 

  36. Villaverde M, Garetto T, Marchi A (2015) Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu–Mg–Al catalysts. Catal Commun 58:6–10

    Article  CAS  Google Scholar 

  37. Reddy Kannapu H, Mullen C, Elkasabi Y, Boateng A (2015) Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni–Cu catalysts using isopropanol. Fuel Process Technol 137:220–228

    Article  CAS  Google Scholar 

  38. Reddy B, Reddy G, Rao K, Khan A, Ganesh I (2007) Silica supported transition metal-based bimetallic catalysts for vapour phase selective hydrogenation of furfuraldehyde. J Mol Catal A 265:276–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “FAST Industrialisation by Catalysts Research and Development (FASTCARD)” Project of the European Commission in the Seventh Framework Programme (GA No. 604277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khromova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khromova, S.A., Bykova, M.V., Bulavchenko, O.A. et al. Furfural Hydrogenation to Furfuryl Alcohol over Bimetallic Ni–Cu Sol–Gel Catalyst: A Model Reaction for Conversion of Oxygenates in Pyrolysis Liquids. Top Catal 59, 1413–1423 (2016). https://doi.org/10.1007/s11244-016-0649-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0649-0

Keywords

Navigation