Skip to main content
Log in

Effect of Water on Ethanol Conversion over ZnO

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic hydrogen production processes from biomass. Renew Sust Energ Rev 14:166–182

    Article  CAS  Google Scholar 

  2. Song H, Ozkan US (2009) Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J Catal 261:66–74

    Article  CAS  Google Scholar 

  3. Davidson SD, Sun JM, Hong YC, Karim AM, Datye AK, Wang Y (2014) The effect of ZnO addition on Co/C catalyst for vapor and aqueous phase reforming of ethanol. Catal Today 233:38–45

    Article  CAS  Google Scholar 

  4. Sun JM, Karim AM, Mei DH, Engelhard M, Bao XH, Wang Y (2015) New insights into reaction mechanisms of ethanol steam reforming on Co–ZrO2. Appl. Catal B 162:141–148

    Article  CAS  Google Scholar 

  5. Chiou JYZ, Siang JY, Yang SY, Ho KF, Lee CL, Yeh CT, Wang CB (2012) Pathways of ethanol steam reforming over ceria-supported catalysts. Int J Hydrog Energy 37:13667–13673

    Article  CAS  Google Scholar 

  6. Song H, Bao XG, Hadad CM, Ozkan US (2011) Adsorption/desorption behavior of ethanol steam reforming reactants and intermediates over supported cobalt catalysts. Catal Lett 141:43–54

    Article  CAS  Google Scholar 

  7. Baylon RAL, Sun J, Wang Y (2005) Conversion of ethanol to 1,3-butadiene over Na doped Zn x Zr y O z mixed metal oxides. Catal Today. doi:10.1016/j.cattod.2015.1004.1010

    Google Scholar 

  8. Contreras JL, Salmones J, Colin-Luna JA, Nuno L, Quintana B, Cordova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H-2 production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853

    Article  CAS  Google Scholar 

  9. Llorca J, Homs N, Sales J, Fierro JLG, de la Piscina PR (2004) Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. J Catal 222:470–480

    Article  CAS  Google Scholar 

  10. Murthy RS, Patnaik P, Sidheswaran P, Jayamani M (1988) Conversion of ethanol to acetone over promoted iron-oxide catalysis. J Catal 109:298–302

    Article  CAS  Google Scholar 

  11. Sun JM, Mei DH, Karim AM, Datye AK, Wang Y (2013) Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates. ChemCatChem 5:1299–1303

    Article  CAS  Google Scholar 

  12. Sun J, Zhang H, Yu N, Davidson S, Wang Y (2015) Effect of cobalt particle size on acetone steam reforming. ChemCatChem 7:2932–2936

    Article  CAS  Google Scholar 

  13. Nakajima T, Nameta H, Mishima S, Matsuzaki I, Tanabe K (1994) A highly-active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water-vapor. J Mater Chem 4:853–858

    Article  CAS  Google Scholar 

  14. Lebarbier VM, Karim AM, Engelhard MH, Wu Y, Xu BQ, Petersen EJ, Datye AK, Wang Y (2011) The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts. ChemSusChem 4:1679–1684

    Article  CAS  Google Scholar 

  15. Woll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120

    Article  Google Scholar 

  16. Kunat M, Girol SG, Burghaus U, Woll C (2003) The interaction of water with the oxygen-terminated, polar surface of ZnO. J Phys Chem B 107:14350–14356

    Article  CAS  Google Scholar 

  17. Onsten A, Stoltz D, Palmgren P, Yu S, Gothelid M, Karlsson UO (2010) Water adsorption on ZnO(0001): transition from triangular surface structures to a disordered hydroxyl terminated phase. J Phys Chem C 114:11157–11161

    Article  Google Scholar 

  18. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4:1078–1090

    Article  CAS  Google Scholar 

  19. Davidson SD, Zhang H, Sun JM, Wang Y (2014) Supported metal catalysts for alcohol/sugar alcohol steam reforming. Dalton Trans 43:11782–11802

    Article  CAS  Google Scholar 

  20. Sun JM, Zhu KK, Gao F, Wang CM, Liu J, Peden CHF, Wang Y (2011) Direct conversion of bio-ethanol to isobutene on nanosized Zn x Zr y O z mixed oxides with balanced acid–base sites. J Am Chem Soc 133:11096–11099

    Article  CAS  Google Scholar 

  21. Liu CJ, Sun JM, Smith C, Wang Y (2013) A study of Zn x Zr y O z mixed oxides for direct conversion of ethanol to isobutene. Appl Catal A 467:91–97

    Article  CAS  Google Scholar 

  22. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloid Surf A 190:261–274

    Article  CAS  Google Scholar 

  23. Jones MD, Keir CG, Di Iulio C, Robertson RAM, Williams CV, Apperley DC (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Catal Sci Technol 1:267–272

    Article  CAS  Google Scholar 

  24. Fujita S, Iwasa N, Tani H, Nomura W, Arai M, Takezawa N (2001) Dehydrogenation of ethanol over Cu/ZnO catalysts prepared from various coprecipitated precursors. React Kinet Catal Lett 73:367–372

    Article  CAS  Google Scholar 

  25. Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol over Cu–Zn–Zr–Al–O catalyst. Appl Catal A 237:53–61

    Article  CAS  Google Scholar 

  26. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473

    Article  CAS  Google Scholar 

  27. Makshina EV, Dusselier M, Janssens W, Degreve J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7917–7953

    Article  CAS  Google Scholar 

  28. Di Cosimo JI, Apesteguia CR, Gines MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohols an Mg y AlO x catalysts. J Catal 190:261–275

    Article  Google Scholar 

  29. Pham TN, Shi DC, Resasco DE (2014) Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J Catal 314:149–158

    Article  CAS  Google Scholar 

  30. Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E (2014) Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 7:2527–2536

    Article  CAS  Google Scholar 

  31. Jones MD (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:5

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the US Department of Energy, Office of Basic Energy Sciences for the financial support, the WSU Franceschi Microscopy Center and Dr. Knoblauch for the use of the TEM. Junming Sun acknowledges the New Faculty Seed Grant support from Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Sun or Yong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Davidson, S.D., Sun, J. et al. Effect of Water on Ethanol Conversion over ZnO. Top Catal 59, 37–45 (2016). https://doi.org/10.1007/s11244-015-0503-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0503-9

Keywords

Navigation