Skip to main content
Log in

Mechanism of CH4 Dry Reforming on Nanocrystalline Doped Ceria-Zirconia with Supported Pt, Ru, Ni, and Ni–Ru

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Specificity of CH4 dry reforming mechanism for Me-supported doped ceria-zirconia catalysts with high oxygen mobility was elucidated using a combination of transient kinetic methods (TAP, SSITKA) with pulse microcalorimetry and in situ FTIRS. Steady-state reaction of CH4 dry reforming is described by a simple redox scheme with independent stages of CH4 and CO2 activation. This is provided by easy CO2 dissociation on reduced sites of oxide supports followed by a fast oxygen transfer along the surface/domain boundaries to metal sites where CH4 molecules are transformed to CO and H2. The rate-limiting stage is irreversible transformation of CH4 on metal sites, while CO2 transformation proceeds much faster being reversible for steady-state surface. The oxygen forms responsible for CH4 selective transformation into syngas correspond to strongly bound bridging oxygen species with heats of desorption ≈600–650 kJ/mol O2, most probably bound with pairs of Pr and/or Ce cations able to change their oxidation state. Ni + Ru clusters could be involved in CO2 activation via facilitating C–O bond breaking in the transition state, thus increasing the rate constant of the surface reoxidation by CO2. Strongly bound carbonates are spectators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roh HS, Potdar HS, Jun KW, Kim JW, Oh YS (2004) Appl Catal A 276:231–239

    Article  CAS  Google Scholar 

  2. Roh HS, Potdar HS, Jun KW, Ji M, Liu ZW (2002) Catal Lett 84:95–101

    Article  Google Scholar 

  3. Horvath A, Stefler G, Geszti O, Kienneman A, Pietraszek A, Guczi L (2011) Catal Today 169:102–111

    Article  CAS  Google Scholar 

  4. Roh HS, Potdar HS, Jun KW (2004) Catal Today 93–95:39–45

    Article  Google Scholar 

  5. Pavlova SN, Sazonova NN, Sadykov VA, Alikina GM, Lukashevich AI, Gubanova EL, Bunina RV (2007) Stud Surf Sci Catal 167:343–348

    Article  CAS  Google Scholar 

  6. Kambolis A, Matralis H, Trovarelli A, Papadopoulou Ch (2010) Appl Catal A 377:16–26

    Article  CAS  Google Scholar 

  7. Damyanova S, Pawelec D, Arishtirova K, Martinez Huerta MV, Fierro JLG (2009) Appl Catal B 89:149–159

    Article  CAS  Google Scholar 

  8. Mezentseva NV, Sazonova NN, Sadykov VA, Patent RU 2453366 C1, 29.11.2010

  9. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE (2000) J Catal 194:240–249

    Article  CAS  Google Scholar 

  10. Sazonova NN, Sadykov VA, Bobin AS, Gubanova EL, Pokrovskaya SA, Mirodatos C (2009) React Kinet Catal Lett 98:35–41

    Article  CAS  Google Scholar 

  11. Kim DK, Stöwe K, Müller F, Maier WF (2007) J Catal 247:101–111

    Article  CAS  Google Scholar 

  12. Guo J, Lou H, Mo L, Zheng X (2010) J Mol Catal A 316:1–7

    Article  CAS  Google Scholar 

  13. García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Malpartida I, Alemany LJ (2010) Catal Today 149:380–387

    Article  Google Scholar 

  14. Bradford CJ, Vannice MA (1996) Appl Catal A 142:97–122

    Article  CAS  Google Scholar 

  15. O’Connor AM, Schuurman Y, Ross JRH, Mirodatos C (2006) Catal Today 115:191–198

    Article  Google Scholar 

  16. Bychkov V, Tyulenin Yu, Krylov O, Korchak V (2002) Kinet Catal 43:775–782

    Google Scholar 

  17. Bychkov V, Tyulenin Yu, Krylov O, Korchak V (2003) Kinet Catal 44:384–390

    Article  Google Scholar 

  18. Schuurman Y, Mirodatos C (1997) Appl Catal A 151:305–331

    Article  CAS  Google Scholar 

  19. Slagtern A, Schuurman Y, Leclercq C, Verykios X, Mirodatos C (1997) J Catal 172:118–126

    Article  CAS  Google Scholar 

  20. Wei J, Iglesia E (2004) J Catal 224:370–383

    Article  CAS  Google Scholar 

  21. Sadykov VA, Mezentseva NV, Alikina GM, Lukashevich AI, Borchert YUV, Kuznetsova TG, Ivanov VP, Trukhan SN, Paukshtis EA, Muzykantov VS, Kuznetsov VL, Rogov VA, Ross J, Kemnitz E, Mirodatos C (2007) Solid State Phenom 128:239–248

    Article  CAS  Google Scholar 

  22. Sadykov VA, Kuznetsova TG, Alikina GM, Frolova YUV, Lukashevich AI, Muzykantov VS, Rogov VA, Batuev LCh, Kriventsov VV, Kochubei DI, Moroz EM, Zyuzin DA, Paukshtis EA, Burgina EB, Trukhan SN, Ivanov VP, Pinaeva LG, Ivanova YuA, Kostrovskii VG, Neophytides S, Kemnitz E, Scheurel K, Mirodatos C (2007) Ceria-based fluorite-like oxide solid solutions promoted by precious metals as catalysts of methane transformation into syngas, chap 5. In: McReynolds DK (ed) New topics in catalysis research. Nova Science Publishers, New York, pp 97–196

  23. Sadykov V, Mezentseva N, Alikina G, Bunina R, Pelipenko V, Lukashevich A, Tikhov S, Usoltsev V, Vostrikov Z, Bobrenok O, Smirnova A, Ross J, Smorygo O, Rietveld B (2009) Catal Today 146:132–140

    Article  CAS  Google Scholar 

  24. Sadykov V, Sobyanin V, Mezentseva N, Alikina G, Vostrikov Z, Fedorova Y, Pelipenko V, Usoltsev V, Tikhov S, Salanov A, Bobrova L, Beloshapkin S, Ross JRH, Smorygo O, Ulyanitskii V, Rudnev V (2010) Fuel 89:1230–1240

    Article  CAS  Google Scholar 

  25. Sadykov V, Mezentseva N, Alikina G, Bunina R, Pelipenko V, Lukashevich A, Vostrikov Z, Rogov V, Krieger T, Ishchenko A, Zaikovsky V, Bobrova L, Ross J, Smorygo O, Smirnova A, Rietveld B, van Berkel F (2011) Nanocomposite materials, theory and applications. INTECH, Vienna

    Google Scholar 

  26. Sadovskaya E, Ivanova Y, Pinaeva L, Grasso G, Kuznetsova T, van Veen A, Sadykov V, Mirodatos C (2007) J Phys Chem A 111:4498–4505

    Article  CAS  Google Scholar 

  27. Sadovskaya E, Suknev A, Pinaeva L, Goncharov V, Bal’zhinimaev B, Chupin C, Perez-Ramirez J, Mirodatos C (2004) J Catal 225:179–186

    Article  CAS  Google Scholar 

  28. Gleaves JT, Yablonsky G, Zheng X, Fushimi R, Mills PL (2010) J Mol Catal A 315:108–134

    Article  CAS  Google Scholar 

  29. Beloshapkin S, Paukshtis E, Sadykov V (2000) J Mol Catal A 158:355–359

    Article  CAS  Google Scholar 

  30. Sadykov V, Gubanova E, Sazonova N, Pokrovskaya S, Chumakova N, Mezentseva N, Bobin A, Gulyaev R, Ishchenko A, Krieger T, Mirodatos C (2011) Catal Today 171:140–149

    Article  CAS  Google Scholar 

  31. Sadykov V, Sazonova N, Bobin A, Muzykantov V, Gubanova E, Alikina G, Lukashevich A, Rogov V, Ermakova E, Sadovskaya E, Mezentseva N, Zevak E, Veniaminov S, Muhler M, Mirodatos C, Schuurman Y, van Veen A (2011) Catal Today 169:125–137

    Article  CAS  Google Scholar 

  32. Sadykov V, Kuznetsova T, Frolova-Borchert Y, Alikina G, Lukashevich A, Rogov V, Muzykantov V, Pinaeva L, Sadovskaya E, Ivanova Y, Paukshtis E, Mezentseva N, Batuev L, Parmon V, Neophytides S, Kemnitz E, Scheurell K, Mirodatos C, van Veen A (2006) Catal Today 117:475–483

    Article  CAS  Google Scholar 

  33. Bulgakov N, Sadykov V, Lunin V, Kemnitz E (2002) React Kinet Catal Lett 76:111–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sadykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobin, A.S., Sadykov, V.A., Rogov, V.A. et al. Mechanism of CH4 Dry Reforming on Nanocrystalline Doped Ceria-Zirconia with Supported Pt, Ru, Ni, and Ni–Ru. Top Catal 56, 958–968 (2013). https://doi.org/10.1007/s11244-013-0060-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0060-z

Keywords

Navigation