Skip to main content
Log in

The Synergy of the Support Acid Function and the Metal Function in the Catalytic Hydrodeoxygenation of m-Cresol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The hydrodeoxygenation (HDO) of m-cresol is investigated as a model for the HDO of phenolic compounds from lignin pyrolysis. Pt catalysts supported on γ-Al2O3 and SiO2 are effective for the conversion of m-cresol to toluene and methylcyclohexane at 533 K and 0.5 atm H2. Experiments using Pt/γ-Al2O3 show that the reaction proceeds by a combination of Pt-catalyzed hydrogenation and acid-catalyzed dehydration reactions. Dehydration of a partially hydrogenated oxygenate intermediate is most likely the dominant reaction pathway to toluene. The acidity of the γ-Al2O3 support was modified by base (K2CO3) and acid (NH4F) treatments, and increasing the number and strength of acid sites was found to increase the rate of HDO. Pt/SiO2 was more active for m-cresol HDO than Pt/Al2O3. The reaction rate on Pt/Al2O3 and Pt/SiO2 decreased after 5 h on stream, but Pt/Al2O3 regained initial reactivity after reductive treatment in H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Czernik S, Bridgwater AV (2004) Energy Fuels 18:590

    Article  CAS  Google Scholar 

  2. Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuels 20:848

    Article  CAS  Google Scholar 

  3. Bridgwater AV, Peacocke GVC (2000) Renew Sustain Energy Rev 4:1

    Article  CAS  Google Scholar 

  4. Huber GW, Corma AC (2007) Angew Chem Int Ed 46:7184

    Article  CAS  Google Scholar 

  5. Furimsky E (2000) Appl Catal A 199:147

    Article  CAS  Google Scholar 

  6. Gevert SB, Eriksson M, Eriksson P, Massoth FE (1994) Appl Catal A 117:151

    Article  CAS  Google Scholar 

  7. Bunch AY, Wang XQ, Ozkan US (2007) J Mol Catal A Chem 270:264

    Article  CAS  Google Scholar 

  8. Nava R, Pawelec B, Castano P, A-G MC, Loricera CV, Fierro JLG (2009) Appl Catal B 92:154

    Article  CAS  Google Scholar 

  9. Romero Y, Richard F, Brunet S (2010) Appl Catal B 98:213

    Article  CAS  Google Scholar 

  10. Van NB, Laurenti D, Afanasiev P, Geantet C (2011) Appl Catal B 101:239

    Article  Google Scholar 

  11. Elliott DC (2007) Energy Fuels 21:1792

    Article  CAS  Google Scholar 

  12. Delmon B, Laurent E (1994) J Catal 146:281

    Article  Google Scholar 

  13. Yoshimura Y, Shimada SH, Matsubayashi N, Nishijima A (1991) Appl Catal 73:55

    Article  CAS  Google Scholar 

  14. Senol OI, Viljava TR, Krause AOI (2005) Catal Today 106:186

    Article  CAS  Google Scholar 

  15. Adjaye JD, Bakhshi NN (1995) Fuel Process Technol 45:161

    Article  CAS  Google Scholar 

  16. Vitolo S, Seggiani M, Frediani P, Ambrosini G, Politi L (1999) Fuel 78:1147

    Article  CAS  Google Scholar 

  17. Carlson TR, Vispute TR, Huber GW (2008) ChemSusChem 1:397

    Article  CAS  Google Scholar 

  18. Gayubo AG, Aguayo AT, Atutxa A, Prieto R, Bilbao J (2004) Energy Fuels 18:1640

    Article  CAS  Google Scholar 

  19. Qi Z, Jie C, Tiejun W, Ying X (2007) Energy Convers Manage 48:87

    Article  Google Scholar 

  20. Demirbas A (2007) Fuel Process Technol 88:591

    Article  CAS  Google Scholar 

  21. Amen-Chen C, Pakdel H, Roy C (2001) Bioresour Technol 79:277

    Article  CAS  Google Scholar 

  22. Massoth FE, Politzer P, Concha MC, Murray JS, Jakowski J, Simons J (2006) J Phys Chem B 110:14283

    Article  CAS  Google Scholar 

  23. Shin EJ, Keane MA (2000) Ind Eng Chem Res 39:883

    Article  CAS  Google Scholar 

  24. Talukdar AK, Bhattacharyya KG, Sivasanker S (1993) Appl Catal A 96:229

    Article  CAS  Google Scholar 

  25. Park C, Keane MA (2003) J Colloid Interface Sci 266:183

    Article  CAS  Google Scholar 

  26. Zhao C, He J, Lemonidou AA, Li X, Lercher JA (2011) J Catal 280:8

    Article  CAS  Google Scholar 

  27. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2010) Chem Commun 46:412

    Article  CAS  Google Scholar 

  28. Gervasini A, Fenyvesi J, Auroux A (1997) Catal Lett 43:219

    Article  CAS  Google Scholar 

  29. Lu SL, Lonergan WW, Zhu Y, Chen JG (2009) Appl Catal B 91:610

    Article  CAS  Google Scholar 

  30. Lin SD, Vannice MA (1993) J Catal 143:563

    Article  CAS  Google Scholar 

  31. Venezia Am, La Parola V, Pawelec B, Fierro JLG (2004) Appl Catal A 264:43

    Article  CAS  Google Scholar 

  32. Sabu KRP, Rao KVC, Nair CGR (1991) Bull Chem Soc Jpn 64:1920

    Article  CAS  Google Scholar 

  33. Popov A, Kondratieva E, Goupil JM, Mariey L, Bazin P, Gilson JP, Travert A, Maugé F (2010) J Phys Chem C 114:15661

    Article  CAS  Google Scholar 

  34. Graca I, Fernandes A, Lopes JM, Ribeiro MF, Laforge S, Magnoux P, Ramoa Ribeiro F (2011) Fuel 90:467

    Article  CAS  Google Scholar 

  35. Centeno A, Laurent E, Delmon B (1995) J Catal 154:288

    Article  CAS  Google Scholar 

  36. Jongpatiwut S, Rattanapuchapong N, Rirskomboon T, Osuwan S, Resasco DE (2008) Catal Lett 122:214

    Article  CAS  Google Scholar 

  37. Flores AF, Burwell RL Jr, Butt JB (1992) J Chem Soc Faraday Trans 88:1191

    Article  CAS  Google Scholar 

  38. Cheng WC, Rajagopalan K (1989) J Catal 119:354

    Article  CAS  Google Scholar 

  39. Tobicik J, Cerveny L (2003) J Mol Catal A Chem 194:249

    Article  CAS  Google Scholar 

  40. Ali AGA, Ali LI, Aboul-Fotouh SM, Aboul-Gheit AK (1998) Appl Catal A 170:285

    Article  CAS  Google Scholar 

  41. Peureux DU, Giroir-Fendler A, Torres M, Ramsay J, Dalmon JA (1993) Appl Catal A 96:83

    Article  Google Scholar 

  42. Sinfelt JH (2000) J Mol Catal A Chem 163:123

    Article  CAS  Google Scholar 

  43. Sinfelt JH, Hurwitz H, Shulman RA (1960) J Phys Chem 64:1559

    Article  CAS  Google Scholar 

  44. Su X, Kung KY, Lahtinen J, Shen YR, Somorjai GA (1999) J Mol Catal A Chem 141:9

    Article  CAS  Google Scholar 

  45. de Gauw FJMM, van Grondelle J, van Santen RA (2002) J Catal 206:295

    Article  Google Scholar 

  46. Berteau P, Kellens MA, Delmon B (1991) J Chem Soc Faraday Trans 87:1425

    Article  CAS  Google Scholar 

  47. Calvino-Casilda V, Martin-Aranda R, Sobczak I, Ziolek M (2006) Appl Catal A 303:121

    Article  CAS  Google Scholar 

  48. Chupas PJ, Chapman KW, Halder GJ (2011) J Am Chem Soc 133:8522

    Article  CAS  Google Scholar 

  49. Medema J, van Bokhoven JJGM, Kuiper AET (1972) J Catal 25:238

    Article  CAS  Google Scholar 

  50. Iordan A, Zaki MI, Kappenstein C (1993) J Chem Soc Faraday Trans 89:2527

    Article  CAS  Google Scholar 

  51. Auroux A (1997) Top Catal 4:71

    Article  CAS  Google Scholar 

  52. Pawelec B, Mariscal R, Navarro RM, van Bokhorst S, Rojas S, Fierro JLG (2002) Appl Catal A 225:223

    Article  CAS  Google Scholar 

  53. Chupin J, Gnep NS, Lacombe S, Guisnet M (2001) Appl Catal A 206:43

    Article  CAS  Google Scholar 

  54. Zhai YP, Pierre D, Si R, Deng WL, Ferrin P, Nilekar AU, Peng GW, Herron JA, Bell DC, Saltsburg H, Mavrkakis M, Flytzani-Stephanopoulos M (2010) Science 329:1633

    Article  CAS  Google Scholar 

  55. Imbert FE, Guisnet M, Gnep S (2000) J Catal 195:279

    Article  CAS  Google Scholar 

  56. Connell G, Dumesic JA (1985) J Catal 92:17

    Article  CAS  Google Scholar 

  57. Bartholomew CH (2001) Appl Catal A 212:17

    Article  CAS  Google Scholar 

  58. Horch S, Lorenson HT, Helveg S, Laegsgaard E, Stensgaard I, Jacobsen KW, Nørskov JK, Besenbacher F (1999) Nature 398:134

    Article  CAS  Google Scholar 

  59. Lee TJ, Kim YG (1984) J Catal 90:279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Javadekar for his assistance in collecting TEM images of the catalysts used in this study. This work was partially supported through funding from the Defense Advanced Research Projects Agency (Surf-Cat: Catalysts for Production of JP-8 range molecules from Lignocellulosic Biomass). The views, opinions, and/or findings contained in this article are those of the author and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. This material is also based upon work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul F. Lobo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2499 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, A.J., Do, P.T.M. & Lobo, R.F. The Synergy of the Support Acid Function and the Metal Function in the Catalytic Hydrodeoxygenation of m-Cresol. Top Catal 55, 118–128 (2012). https://doi.org/10.1007/s11244-012-9781-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9781-7

Keywords

Navigation