Skip to main content
Log in

Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy Catalysts Based on Their Measured Electronic Structure

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

While it is fairly straightforward to predict the relative chemical reactivity of pure metals, obtaining similar structure-performance relationships for alloys is more challenging. In this contribution we present experimental analysis supported with quantum chemical DFT calculations which allowed us to propose a simple, physically transparent model to predict the impact of alloying on the local electronic structure of different sites in alloys and on the local chemical reactivity. The model was developed through studies of a number of Pt alloys. The central feature of the model is that hybridization of d-orbitals in alloys does not lead to significant charge transfer between the constituent elements in the alloy, and therefore the width of the local density of d-states projected on a site, which is easily calculated from tabulated parameters, is an excellent descriptor of the chemical reactivity of the site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes and applications. Illustrated edition. ASM International. Materials Park, OH, USA

  2. Ponec V (2001) Appl Catal A Gen 222:31–45

    Article  CAS  Google Scholar 

  3. Gladys MJ, Inderwildi OR, Karakatsani S, Fiorin V, Held G (2008) J Phys Chem. C 112:6422–6429

    Article  CAS  Google Scholar 

  4. Nikolla E, Holewinski A, Schwank J, Linic S (2006) J Am Chem Soc 128:11354–11355

    Article  CAS  Google Scholar 

  5. Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493

    Article  CAS  Google Scholar 

  6. Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Langmuir 23:6438–6445

    Article  CAS  Google Scholar 

  7. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Science 279:1913–1915

    Article  CAS  Google Scholar 

  8. Stamenkovic VR, Fowler B, Mun B, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493–497

    Article  CAS  Google Scholar 

  9. Hammer B (2006) Top Catal 37:3–16

    Article  CAS  Google Scholar 

  10. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  11. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141

    Article  CAS  Google Scholar 

  12. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278

    Article  Google Scholar 

  13. Hammer B, Nørskov JK (1995) Nature 376:238–240

    Article  CAS  Google Scholar 

  14. Harrison WA (1980) Solid state theory. Dover Publications, New York

    Google Scholar 

  15. Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747–2754

    Article  CAS  Google Scholar 

  16. Stern EA (1967) Phys Rev 157:544

    Article  CAS  Google Scholar 

  17. Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) J Mol Catal A Chem 115:421–429

    Article  CAS  Google Scholar 

  18. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240–10246

    Article  CAS  Google Scholar 

  19. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  20. Gracia FJ, Guerrero S, Wolf EE, Miller JT, Kroph AJ (2005) J Cata 233:372–387

    Google Scholar 

  21. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  22. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  23. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  24. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  25. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  26. Segall MD (2002) J Phys Condens Matter 14:2957–2973

    Article  CAS  Google Scholar 

  27. Gao S, Pickard CJ, Perlov A, Milman V (2009) J Phys Condens Matter 21:104203

    Article  Google Scholar 

  28. Gao Shang-Peng, Pickard CJ, Payne MC, Zhu J, Yuan J (2008) Phys Rev B 77:115122–115127

    Article  Google Scholar 

  29. Hwu HH, Eng J, Chen JG (2002) J Am Chem Soc 124:702–709

    Article  CAS  Google Scholar 

  30. Pettifor DG (1995) Bonding and structure of molecules and solids. Oxford University Press, USA

    Google Scholar 

  31. Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330–2334

    Article  CAS  Google Scholar 

  32. Durussel Ph, Massara R, Feschotte P (1994) J Alloys Compd 215:175–179

    Article  CAS  Google Scholar 

  33. Linde JO (1937) Annalen Der Physik 422:151–164

    Article  Google Scholar 

  34. Ankudinov AL, Nesvizhskii AI, Rehr JJ (2001) J Synchrotron Radiat 8:92–95

    Article  CAS  Google Scholar 

  35. Hammer B, Nørskov JK (1997) In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films. Kluwer, Dordrecht, pp 331–351

  36. Newns DM (1969) Phys Rev 178:1123

    Article  CAS  Google Scholar 

  37. Anderson PW (1961) Phys Rev 124:41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the US Department of Energy DOE-BES, Division of Chemical Sciences (FG-02-05ER15686), NSF (CTS-CAREER 0543067 and NSF CBET 0756255), and ONR (N000140810122) S. Linic also acknowledges the DuPont Young Professor grant by DuPont corporation and the Camille Dreyfus Teacher-Scholar Award for the Camille & Henry Dreyfus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suljo Linic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, N., Xin, H., Nikolla, E. et al. Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy Catalysts Based on Their Measured Electronic Structure. Top Catal 53, 348–356 (2010). https://doi.org/10.1007/s11244-010-9448-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9448-1

Keywords

Navigation