Skip to main content
Log in

Synthesis and Catalytic Activity of Cu(II), Fe(III) and Bi(III) Complexes of Thio-Schiff Base Encapsulated in Zeolite-Y for Hydroxylation of Phenol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Coordination of 4-{[(1E)-(2-hydroxyphenyl)methylene]amino}-2,4-dihydro-3H-1,2,4-triazole-3-thione, [sal(thiotriazol)], with M-exchanged zeolite-Y (M = Cu(II), Fe(III) and Bi(III)) leads to the encapsulation of the metal complexes in the supercages of zeolite-Y by flexible ligand method. The prepared encapsulated metal complexes have been characterized by physico-chemical techniques, which indicated that the complexes were effectively encapsulated inside the supercages of Na–Y, without any modification of the morphology and structure of the zeolite. 3D model structure generated for these complexes suggests that zeolite-Y can accommodate these complexes in the FAU supercages without any strain. The catalytic activity of all the catalysts towards the hydroxylation of phenol was evaluated under heterogeneous conditions using hydrogen peroxide as an oxidant. Under the optimized conditions, these catalysts show moderate activity with excellent selectivity (>95%) towards catechol. These catalysts were stable in hydroxylation of phenol and have been reused a further three times after recovering. The results reflect the reusability of the catalysts, as no significant loss in their catalytic activity was noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parton R, De Vos D, Jacobs PA (1992) In: Derouane EG, Lemos F, Naccache C, Riberio FR (eds) Proceedings of the NATO advanced study institute on zeolite microporous solids: synthesis, structure and reactivity. Kluwer Academic, Dordrecht, 555 pp

  2. Knops-Gerrits PP, De Vos D, Thibault-Starzyk F, Jacobs PA (1994) Nature 369:543

    Article  CAS  Google Scholar 

  3. Grommen R, Manikandan P, Gao Y, Shane T, Shane JJ, Schoonheydt RA, Weckhuysen BM, Goldfarb D (2000) J Am Chem Soc 122:11488

    Article  CAS  Google Scholar 

  4. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615

    Article  Google Scholar 

  5. Song CE, Lee S-G (2002) Chem Rev 102:3495

    Article  CAS  Google Scholar 

  6. Balkus KJ Jr, Gabrielov AG (1995) J Incl Phenom Mol Recognit Chem 21:159

    CAS  Google Scholar 

  7. Brunel D, Bellocq N, Sutra P, Cauvel A, Lasperas M, Moreau P, Di Renzo F, Galarneau A, Fajula F (1998) Coord Chem Rev 178–180:1085

    Article  Google Scholar 

  8. Parton RF, Vankelecom IF, Casselman MJA, Bezoukhanova CP, Uytterhoeven JB, Jacobs PA (1994) Nature 370:541

    Article  CAS  Google Scholar 

  9. Sabater MJ, Corma A, Domenech A, Fornes V, Garcia H (1997) Chem Commun 1285

  10. Piaggio P, McMorn P, Langham C, Bethell D, Page PCB, Hancock FE, Hutchings GJ (1998) New J Chem 22:1167

    Article  Google Scholar 

  11. Weitkamp J, Puppe L (1999) In: Catalysis and zeolites: fundamentals and applications. Springer Verlag, Berlin

  12. Sheldon RA, van Bekkum H (2001) In: Fine chemicals through heterogeneous catalysis, Wiley-VCH, New York

  13. Glaeser R, Weitkamp J (2004) In: The application of zeolites in catalysis. Springer series in Chemical Physics, vol 75 (Basic principles in applied catalysis). Springer Verlag, Berlin

  14. Xavier KO, Chacko J, Mohammed Yusuff KK (2004) Appl Catal A 258:251

    Article  CAS  Google Scholar 

  15. Mukhopadhyay K, Mandale AB, Chaudhari RV (2003) Chem Mater 15:1766

    Article  CAS  Google Scholar 

  16. Alvaro M, Cardin DJ, Colquhoun HM, Garcia H, Gilbert A, Lay AK, Thorpe JH (2005) Chem Mater 17:2546

    Article  CAS  Google Scholar 

  17. Ganesan R, Viswanathan B (2004) J Phys Chem B 108:7102

    Article  CAS  Google Scholar 

  18. Abbo HS, Titinchi SJJ (2009) Appl Catal A 356:167

    Article  CAS  Google Scholar 

  19. Maurya MR, Titinchi SJJ, Chand S (2004) J Mol Catal A 214:257

    Article  CAS  Google Scholar 

  20. Maurya MR, Titinchi SJJ, Chand S (2003) J Mol Catal A 201:119

    Article  CAS  Google Scholar 

  21. Maurya MR, Titinchi SJJ, Chand S (2003) Catal Lett 89:219

    Article  CAS  Google Scholar 

  22. Maurya MR, Titinchi SJJ, Chand S (2003) J Mol Catal A 193:165

    Article  CAS  Google Scholar 

  23. Maurya MR, Titinchi SJJ, Chand S (2002) Appl Catal A 228:177

    Article  CAS  Google Scholar 

  24. Maurya MR, Titinchi SJJ, Chand S, Mishra IM (2002) J Mol Catal A 180:201

    Article  CAS  Google Scholar 

  25. Maurya MR, Kumar M, Titinchi SJJ, Abbo HS, Chand S (2003) Catal Lett 86:97

    Article  CAS  Google Scholar 

  26. Burns GR (1968) Inorg Chem 7:227

    Article  Google Scholar 

  27. Bala S, Gupta RP, Sachdeva ML, Singh A, Pujari HK (1978) Indian J Chem B 16B:481

    CAS  Google Scholar 

  28. Jacob CR, Varkey SP, Ratnasamy P (1998) Microporous Mesoporous Mater 22:465

    Article  CAS  Google Scholar 

  29. Bowers C, Dutta PK (1990) J Catal 122:271

    Article  CAS  Google Scholar 

  30. Sen AK, Singh G, Singh K, Handa RN, Dubey SN, Squattrito PJ (1998) Proc Indian Acad Sci Chem Sci 110:75

    CAS  Google Scholar 

  31. McCarrick RM, Eltzroth MJ, Squattrito PJ (2000) Inorg Chim Acta 311:95

    Article  CAS  Google Scholar 

  32. Escobar-Valderrama JL, Garcia-Tapia JH, Ramirez-Ortiz J, Rosales MJ, Toscano RA, Valdes-Martinez J (1989) Can J Chem 67:198

    Article  CAS  Google Scholar 

  33. Kajdan TW, Squattrito PJ, Dubey SN (2000) Inorg Chim Acta 300–302:1082

    Article  Google Scholar 

  34. Weng NS (1992) Acta Crystallogr C C48:2224

    CAS  Google Scholar 

  35. Geary WJ (1971) Coord Chem Rev 7:81

    Article  CAS  Google Scholar 

  36. Shukla PR, Singh VK, Jaiswal AM, Narain G (1983) J Indian Chem Soc 60:321

    CAS  Google Scholar 

  37. Nakamoto K (1997) In: Infrared and Raman spectra of inorganic and coordination compounds, part I: theory and applications in inorganic chemistry. Wiley, New York

  38. Lever ABP (1984) In: Inorganic electronic spectroscopy. Elsevier, New York

  39. Srivastava AK, Rana VB, Mohan M (1974) J Inorg Nucl Chem 36:2118

    Article  CAS  Google Scholar 

  40. Quayle WH, Lunsford JH (1982) Inorg Chem 21:97

    Article  CAS  Google Scholar 

  41. Quayle WH, Peeters G, De Roy GL, Vansant EF, Lunsford JH (1982) Inorg Chem 21:2226

    Article  CAS  Google Scholar 

  42. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  43. Meyer G, Woehrle D, Mohl M, Schulz-Ekloff G (1984) Zeolites 4:30

    Article  CAS  Google Scholar 

  44. Diegruber H, Plath PJ, Schulz-Ekloff G (1984) J Mol Catal 24:115

    Article  CAS  Google Scholar 

  45. Corma A, Esteve P, Martinez A (1996) J Catal 161:11

    Article  CAS  Google Scholar 

  46. Salavati-Niasari M, Bazarganipour M (2006) Catal Commun 7:336

    Article  CAS  Google Scholar 

  47. Maurya MR, Saklani H, Kumar A, Chand S (2004) Catal Lett 93:121

    Article  CAS  Google Scholar 

  48. Srinivas D, Sivasanker S (2003) Catal Surv Asia 7:121

    Article  CAS  Google Scholar 

  49. Chavan S, Srinivas D, Ratnasamy P (2000) J Catal 192:286

    Article  CAS  Google Scholar 

  50. Wilkenhöner U, Langhendries G, van Laar F, Baron GV, Gammon DW, Jacobs PA, van Steen E (2001) J Catal 203:201

    Article  Google Scholar 

  51. Reddy JS, Sivasanker S, Ratnasamy P (1992) J Mol Catal 71:373

    Article  CAS  Google Scholar 

  52. Chao P-Y, Tsai S-T, Tsai T-C, Mao J, Guo X-W (2009) Top Catal 52:185

    Article  CAS  Google Scholar 

  53. Klaewkla R, Kulprathipanja S, Rangsunvigit P, Rirksomboon T, Nemeth L (2003) Chem Commun 1500

  54. Keshavaraja A, Ramaswamy V, Soni HS, Ramaswamy AV, Ratnasamy P (1995) J Catal 157:501

    Article  CAS  Google Scholar 

  55. Thangaraj A, Kumar R, Ratnasamy P (1991) J Catal 131:294

    Article  CAS  Google Scholar 

  56. Tsai S-T, Chao P-Y, Tsai T-C, Wang I, Liu X, Guo X-W (2009) Catal Today 148:174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Research Foundation (NRF), South Africa and the Research Committees of the University of the Western Cape for finance support. We also wish to acknowledge Dr R, Bucher, iThemba Labs, South Africa for X-ray diffraction analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam J. J. Titinchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbo, H.S., Titinchi, S.J.J. Synthesis and Catalytic Activity of Cu(II), Fe(III) and Bi(III) Complexes of Thio-Schiff Base Encapsulated in Zeolite-Y for Hydroxylation of Phenol. Top Catal 53, 254–264 (2010). https://doi.org/10.1007/s11244-009-9408-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9408-9

Keywords

Navigation