Skip to main content

Advertisement

Log in

A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions

Solid Catalysts for Benign Conversions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

After first outlining in qualitative terms progress made in predicting and modelling solids in general, a brief account is given of the substantial progress made in enumerating hypothetical open structures based on 4-coordinantion, some of which will possibly play a role in the catalytic conversion of carbohydrates that figure eminently in renewable feedstocks. Specifically, in outlining trends in processing renewable organic species, attention is paid to (i) converting starch into potentially important new fuels; (ii) the catalytic dehydration of bio-ethanol to yield ethylene; and (iii) catalytically assisted modifications that can be made to bio-glycerol, especially via oxidation. Finally, progress made in a general strategy for the design of new catalysts is outlined, and a tabulation given of a dozen or so examples that have high commercial significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It has been proposed by Horváth et al. [30] that γ-valerolactone, in view of its general chemical and physical properties, could function in future as a sustainable liquid for the production of energy and carbon-based chemicals. It is not clear, however, how easy it is going to be to produce large quantities of this material for the clean technology that one desires.

References

  1. Whitesides GM, Crabtree GW (2007) Science 315:796

    Article  CAS  Google Scholar 

  2. Thomas JM, Raja R (2006) Top Catal 40:3

    Article  CAS  Google Scholar 

  3. Thomas JM (2008) J Chem Phys 120:182502

    Article  CAS  Google Scholar 

  4. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Edit 44:6456

    Article  CAS  Google Scholar 

  5. Schloegl R (1994) Angew Chem Int Ed 33:311

    Article  Google Scholar 

  6. Thomas JM, Zamaraev KI (1994) Angew Chem Int Edit 33:308

    Article  Google Scholar 

  7. Notari B (1994) Adv Catalysis 41:253

    Article  Google Scholar 

  8. Ballantine JA, Purnell JH, Thomas JM (1984) Molec Catal 27:157

    Article  CAS  Google Scholar 

  9. Ballantine JA, Purnell JH, Thomas JM (1985) US Patent 4, 999, 319

  10. Thomas JM, Zamaraev KI (1992) Perspectives in Catalysis. Blackwell-IUPAC, North Carolina

    Google Scholar 

  11. Woodley SM, Catlow R (2008) Nature Materials 7:937

    Article  CAS  Google Scholar 

  12. Catlow CRA, Thomas JM, Parker SC, Jefferson DA (1982) Nature 295:658

    Article  CAS  Google Scholar 

  13. Parker SC (1983) Solid State Ionics 8:179

    Article  CAS  Google Scholar 

  14. Catlow CRA, Thomas JM, Freeman CM, Wright PA, Bell RG (1993) Proc R Soc Lond A 442:85

    Article  CAS  Google Scholar 

  15. Thomas JM (1999) Angew Chem Int Edit 38:3588

    Article  Google Scholar 

  16. Thomas JM, Klinowski J (2007) Angew Chem Int Edit 46:7160

    Article  CAS  Google Scholar 

  17. Majda D, Paz FAA, Friedrichs D, Foster MD, Simperler A, Bell RG, Klinowski J (2008) J Phys Chem C 112:1040

    Article  CAS  Google Scholar 

  18. Kirkpatrick S, Gelatt JCD, Vecchi MP (1983) Science 220:671

    Article  CAS  Google Scholar 

  19. Harris KDM, Habershorn S, Cheung EY, Johnson RL (2004) Z Krystallogra 219:838

    Article  CAS  Google Scholar 

  20. Treacy MMJ, Randall KH, Rao S, Perry JA, Chadi DJ (1997) Z Krystallogr 212:768

    Article  CAS  Google Scholar 

  21. Foster MD, Simperler A, Bell RG, Delgado Friedrichs O, Almeida Paz FA, Klinowski J (2004) Nature Materials 3:234

    Article  CAS  Google Scholar 

  22. Hofmann DWM, Apostolakis J (2003) J Molec Struc 647:17

    Article  CAS  Google Scholar 

  23. Price SL (2008) Phys Chem Chem Phys 10:1996

    Article  CAS  Google Scholar 

  24. Jansen M (2008) Turning Points in Solid-State, Materials Science and Surface Chemistry. RSC Publising, Cambridge, p 22

    Google Scholar 

  25. Čančarević ŽP, Schön JC, Jansen M (2008) Chem Asian J 3:561

    Article  CAS  Google Scholar 

  26. Smith K, Zhenhua Z, Hodgson PKG (1998) J Mol Catal A: Chemical 134:121

    Article  CAS  Google Scholar 

  27. Smith K, Almeer S, Black SJ (2000) Chem Commun 17:1571

    Article  Google Scholar 

  28. Thomas JM, Hernandez-Garrido JC, Raja R, Bell RG (2009) Phys Chem Chem Phys (in press)

  29. Arnold FH (1998) Acc Chem Res 31:125

    Article  CAS  Google Scholar 

  30. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238

    Article  CAS  Google Scholar 

  31. Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982

    Article  CAS  Google Scholar 

  32. Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T (2003) Chem Commun 10:1126

    Article  CAS  Google Scholar 

  33. Editor’s Choice (2003) Science 300:867

    Google Scholar 

  34. Svelle S, Olsbye U, Joensen F, Bjørgen M (2007) J Phys Chem C 111:17981

    Article  CAS  Google Scholar 

  35. Xu Y, Grey CP, Thomas JM, Cheetham AK (1990) Cat Lett 4:251

    Article  CAS  Google Scholar 

  36. Raja R, Potter ME, Paterson AJ, Lefenfeld M, Thomas JM (2009) (submitted)

  37. Zhou C-H, Beltramini JN, Fana Y-X, Lu GQ (2008) Chem Soc Rev 37:527

    Article  CAS  Google Scholar 

  38. Glycerol (2001) Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Inc, New York

  39. Wang ZZJ, Zhuge J, Fang H, Prior BA (2001) Biotechnol Adv 19:201

    Article  CAS  Google Scholar 

  40. Chowdury J, Fouky K (1993) Chem Eng 100:35

    Google Scholar 

  41. Karaosmanoglu F, Cigizoglu KB, Tuter M, Ertekin S (1996) Energy Fuels 10:890

    Article  CAS  Google Scholar 

  42. Meher LC, Vidya Sagar D, Naik SN (2006) Renewable Sustainable Energy Rev 10:248

    Article  CAS  Google Scholar 

  43. McCoy M (2006) Chem Eng News 84:7

    Google Scholar 

  44. Wilson EK (2002) Chem Eng News 80:46

    Google Scholar 

  45. Bagley ST, Gratz LD, Johnson JH, McDonald JF (1998) Environ Sci Technol 32:1183

    Article  CAS  Google Scholar 

  46. Frondel M, Peters J (2007) Energy Policy 35:1675

    Article  Google Scholar 

  47. Gong CS, Du JX, Cao NJ, Tsao GT (2000) Appl Biochem Biotechnol 84:543

    Article  Google Scholar 

  48. Rogers PL, Jeon YJ, Svenson CJ (2005) Process Saf Environ Prot 83:499

    Article  CAS  Google Scholar 

  49. Wyman CE (2003) Biotechnol Prog 19:254

    Article  CAS  Google Scholar 

  50. Landucci R, Goodman BJ, Wyman CE (1994) Appl Biochem Biotechnol 45–46:677

    Article  Google Scholar 

  51. Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C (2005) Environ Chem Lett 3:136

    Article  CAS  Google Scholar 

  52. Chiu CW, Goff MJ, Suppes GJ (2005) AIChE J 51:1274

    Article  CAS  Google Scholar 

  53. Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) Catal Today 106:190

    Article  CAS  Google Scholar 

  54. Christensen CH, Raas-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) ChemSusChem 1:283

    Article  CAS  Google Scholar 

  55. Prati L, Spontoni P, Gaiassi A (2009) Top Catal (in press)

  56. Thomas JM, Raja R (2006) Catal Today 117:22

    Article  CAS  Google Scholar 

  57. Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M, Quill K (2006) Chem Commun 4:448

    Article  CAS  Google Scholar 

  58. Dugal M, Sankar G, Raja R, Thomas JM (2000) Angew Chem Int Ed Engl 39:2310–2313

    Article  CAS  Google Scholar 

  59. Raja R, Sankar G, Thomas JM (2000) Angew Chem Int Ed Engl 39:2313–2316

    Article  CAS  Google Scholar 

  60. Raja R, Thomas JM, Chem Soc Chem J (1998) Commun 17:1841–1842

    Google Scholar 

  61. Thomas JM, Raja R, Sankar G, Bell RG (1999) Nature 398:227–230

    Article  CAS  Google Scholar 

  62. Raja R (2007) In: Harris KDM and Edwards P (eds) Turning points in solid-state, materials and surface science, RSC Publishing, London, pp 623–638

  63. Raja R, Thomas JM, Dreyer V (2006) Catal Lett 110:179–183

    Article  CAS  Google Scholar 

  64. Thomas JM, Raja R (2005) Proc Natl Acad Sci 102:13732–13736

    Article  CAS  Google Scholar 

  65. Raja R, Thomas JM, Greenhill-Hooper M, Ley SV, Paz FAA (2008) Chem Eur J14:2340–2348

    Article  Google Scholar 

  66. Raja R, Thomas JM, Greenhill-Hooper M & Doukova V (2007) Chem Commun, 1924–1926

  67. Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M & Quill (2006) Chem Commun, 448–450

  68. Raja R, Thomas JM, Jones MD, Johnson BFG, Vaughan DEW (2003) J Am Chem Soc 125:14982–14983

    Article  CAS  Google Scholar 

  69. Jones MD, Raja R, Thomas JM, Rouzard J, Johnson BFG, Harris KDM (2003) Angew Chem Int Ed Engl 42:4326–4331

    Article  CAS  Google Scholar 

  70. Thomas JM, Raja R (2008) Acc Chem Res 41:708–720

    Article  CAS  Google Scholar 

  71. Adams RD, Blom DA, Captain B, Raja R, Thomas JM, Trufan E (2008) Langmuir 24:9223–9226

    Article  CAS  Google Scholar 

  72. Hungria AB, Raja R, Adams RD, Captain B, Thomas JM, Midgley PA, Golovko VB, Johnson BFG (2006) Angew Chem Int Ed Engl 45:4782–4785

    Article  CAS  Google Scholar 

  73. Chen J, Thomas JM (1994) Chem Commun 603

  74. Thomas JM, Hernandez-Garrido JC, Raja R, Bell RG (2009) Phys Chem Chem Phys 11:2799–2825

    Article  CAS  Google Scholar 

  75. Raja R, Adams RD, Blom DA, Pearl WC, Gianotti E, Thomas JM (2009) Langmuir 25 (in press)

Download references

Acknowledgments

We thank Dr R. Raja for his help in compiling Table 1. J.C. H.G. thanks the European Union for financial support under the Framework 6 program for an Integrated Infrastructure Initiative (Ref.:026019 ESTEEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Meurig Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J.M., Hernandez-Garrido, J.C. & Bell, R.G. A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions. Top Catal 52, 1630–1639 (2009). https://doi.org/10.1007/s11244-009-9302-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9302-5

Keywords

Navigation