Skip to main content

Advertisement

Log in

Vanadium complexes: potential candidates for therapeutic applications

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Transition metal with variable oxidation states has always been a point of attraction since many decades for scientists with special focus in the field of catalysis, biologically active agents, therapeutic drugs, etc. Among these, vanadium is a metal which is of multi-dimensional potential for industry, pharmaceutics, physiology, etc. Albeit the fact that inorganic vanadium salts like Na2VO3 and VOSO4 have shown considerable medical potential, yet their low absorbance, higher toxicity and excretion through feces and urine drifted the attention of scientist to synthesize novel vanadium compounds/organic polyoxovanadate (POV) having versatile therapeutic potential, better absorbance and specific intra-/intercellular biomolecular interaction with various cell signaling pathways, resulting in better therapeutic activities. In past few decades, this area of research has gained much attention but still need to be done a lot in future. Keeping in mind the therapeutic scope of various vanadium complexes, the present review article is written with the purpose of providing comprehensive overview to those who are interested to dive and explore the possibility for the synthesis of new vanadium complexes as drug with its therapeutic properties. Our study aims at reporting the biphasic behavior of vanadium, a range of vanadium compound with special focus on its anti-diabetic, anti-bacterial, anti-viral, cardiovascular, anticancer, anti-oxidant, alkaline phosphatase (ALP) inhibitor properties and their probable mechanism cited in recent leading literature databases. Analogy of vanadate with phosphate responsible for its interaction with various phosphatase enzymes like ALP, protein tyrosine phosphatase (PTP), etc. in the mechanistic point of view is analyzed. The multi-directional study carried out so far on vanadium complexes and its mechanistic interaction at biomolecular level need to be systematically summarized for further innovation in drug discovery and to make new avenues in the synthetic metallodrug fields to fight against some lethal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rehder D (2008) Org Biomol Chem 6:957–964. https://doi.org/10.1039/B717565P

    Article  CAS  PubMed  Google Scholar 

  2. Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A (2020) J Trace Elem Med Biol 61:126508. https://doi.org/10.1016/j.jtemb.2020.126508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Biol Trace Elem Res 188:68–98. https://doi.org/10.1007/s12011-018-1540-6

    Article  CAS  PubMed  Google Scholar 

  4. Chasteen ND (1984) Struct Bond 53:105–208

    Article  Google Scholar 

  5. Ramasarma T, Crane FL (1981) Curr Top Cell Regul 20:247–301. https://doi.org/10.1016/B978-0-12-152820-1.50011-0

    Article  CAS  PubMed  Google Scholar 

  6. Crans DC, Tracey AS (1998). The chemistry of vanadium in aqueous and nonaqueous solution. https://doi.org/10.1021/bk-1998-0711.ch001

    Article  Google Scholar 

  7. Khandelwal RL, Pugazhenthi S (1995) Mol Cell Biochem 153:87–94. https://doi.org/10.1007/978-1-4613-1251-2_10

    Article  CAS  PubMed  Google Scholar 

  8. Rossetti L, Lauglin MR (1989) J Clin Invest 84:892–899. https://doi.org/10.1172/JCI1144250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blondel O, Bailbe D, Portha B (1989) Diabetol 32:185–190. https://doi.org/10.1007/BF00265092

    Article  CAS  Google Scholar 

  10. Blondel O, Simon J, Chevalier B, Portha B (1990) Am J Physiol 258:E459–E467. https://doi.org/10.1152/ajpendo.1990.258.3.E459

    Article  CAS  PubMed  Google Scholar 

  11. Crans DC, Henry L, Cardiff G, Posner BI (2019) Essential Metals Med: Therap Use Toxic Metal Ions Clin 19:203–230

    CAS  Google Scholar 

  12. Pessoa JC, Garribba E, Santos MF, Santos-Silva T (2015) Coord Chem Rev 301:49–86. https://doi.org/10.1016/j.ccr.2015.03.016

    Article  CAS  Google Scholar 

  13. Zaporowska H, Scibior A (1998) Vanadium and its significance in animal cell metabolism. In: Nriagu JO (ed) Vanadium in the Environment Part 2: Health Effects. John Wiley and Sons, New York, pp 121–133

    Google Scholar 

  14. Ścibior A, Kurus J (2019) Curr Med Chem 26:5456–5500. https://doi.org/10.2174/0929867326666190108112255

    Article  CAS  PubMed  Google Scholar 

  15. Ścibior A, Adamczyk A, Gołębiowska D, Kurus J (2018) Chem Biol Interact 293:1–10. https://doi.org/10.1016/j.cbi.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  16. Ścibior A, Zaporowska H, Ostrowski J (2006) Arch Environ Contam Toxicol 51:287–295. https://doi.org/10.1007/s00244-005-0126-4

    Article  CAS  PubMed  Google Scholar 

  17. Ścibior A, Zaporowska H, Niedźwiecka I (2009) J Appl Toxicol 29:619–628. https://doi.org/10.1002/jat.1450

    Article  CAS  PubMed  Google Scholar 

  18. Ścibior A, Zaporowska H, Niedźwiecka I (2010) J Appl Toxicol 30:487–496. https://doi.org/10.1002/jat.1520

    Article  CAS  PubMed  Google Scholar 

  19. Ścibior A, Gołębiowska D, Niedźwiecka I (2013) Oxid Med Cell Longev 2013:1–11. https://doi.org/10.1155/2013/802734

    Article  CAS  Google Scholar 

  20. Ścibior A, Gołębiowska D, Niedźwiecka I, Adamczyk A (2013) Ind J Exp Biol 51:721–731

    Google Scholar 

  21. Ni L, Zhao H, Tao L, Li X, Zhou Z, Sun Y, Chen C, Wei D, Liu Y, Diao G (2018) Dalton Trans 47:10035–10045. https://doi.org/10.1039/C8DT01778F

    Article  CAS  PubMed  Google Scholar 

  22. Aliabad HB, Falahati-Pour SK, Ahmadirad H, Mohamadi M, Hajizadeh MR, Mahmoodi M (2018) Biometals 31:981–990. https://doi.org/10.1007/s10534-018-0139-x

    Article  CAS  Google Scholar 

  23. Patra D, Paul S, Majumder I, Sepay N, Bera S, Kundu R, Drew MGB, Gosh T (2017) Dalton Trans 46:16276–16293. https://doi.org/10.1039/c7dt03585c

    Article  CAS  PubMed  Google Scholar 

  24. Jayaseelan P, Akila E, Rani MU, Rajavel R (2016) J Saudi Chem Soc 20:625–634. https://doi.org/10.1016/j.jscs.2013.07.001

    Article  CAS  Google Scholar 

  25. Inada Y, Mochizuki K, Tsuchiya T, Tsuji H, Funahashi S (2005) Inorg chimica acta 358:3009–3014. https://doi.org/10.1016/j.ica.2004.12.015

    Article  CAS  Google Scholar 

  26. Kumar CK, Keshavayya J, Rajesh T, Peethambar SK (2013) Int J Pharm Pharm Sci 5:296–301. https://doi.org/10.1155/2013/370626

    Article  CAS  Google Scholar 

  27. Ramadan AE, Ibrahim MM, Shaban SY (2011) J Mol Struct 1006:348–355. https://doi.org/10.1016/j.molstruc.2011.09.031

    Article  CAS  Google Scholar 

  28. Viswanathamurthi P, Natarajan K (2006) Synth React Inorg Met-Org Chem 36:415–418. https://doi.org/10.1080/15533170600732619

    Article  CAS  Google Scholar 

  29. Patel RN (2010) Inorg Chim Acta 363:3838–3846. https://doi.org/10.1016/j.ica.2010.07.026

    Article  CAS  Google Scholar 

  30. More MS, Joshi PG, Mishra YK, Khanna PK (2019) Mater Today Chem 14:100195. https://doi.org/10.1016/j.mtchem.2019.100195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conant JB, Bartlett PD (1932) J Am Chem Soc 54:2881–2899. https://doi.org/10.1021/ja01346a030

    Article  CAS  Google Scholar 

  32. Kumar S, Dhar DN, Saxena PN (2009) J Sci Ind Res India 68:181–187

    CAS  Google Scholar 

  33. Mandal S, Seth DK, Gupta P (2013) Inorganica Chim Acta 397:10–20. https://doi.org/10.1016/j.ica.2012.11.011

    Article  CAS  Google Scholar 

  34. Lessa JA, Reis DC, Mendes IC, Speziali NL, Rocha LF, Pereira VRA, Melo CML, Beraldo H (2011) Polyhedron 30:372–380. https://doi.org/10.1016/j.poly.2010.11.004

    Article  CAS  Google Scholar 

  35. Hashmi K, Gupta S, Siddique A, Khan T, Joshi S (2023). J Trace Elem Med Biol. https://doi.org/10.1016/j.jtemb.2023.127245

    Article  PubMed  Google Scholar 

  36. Aureliano M (2017) Glob J Cancer Ther 3:12–14

    Article  Google Scholar 

  37. Bijelic A, Aureliano M, Rompel A (2019) Angew Chem Int Ed 58:2980–2999. https://doi.org/10.1002/anie.201803868

    Article  CAS  Google Scholar 

  38. Pereira MJ, Carvalho E, Eriksson JW, Crans DC, Aureliano M (2009) J Inorg Biochem 103:1687–1692. https://doi.org/10.1016/j.jinorgbio.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  39. Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E (2021) Coord Chem Rev 449:214192. https://doi.org/10.1016/j.ccr.2021.214192

    Article  CAS  Google Scholar 

  40. Sanna D, Micera G, Garribba E (2009) Inorg Chem 48:5747–5757. https://doi.org/10.1021/ic802287s

    Article  CAS  PubMed  Google Scholar 

  41. Pessoa JC (2015) J Inorg Biochem 147:4–24. https://doi.org/10.1016/j.jinorgbio.2015.03.004

    Article  CAS  Google Scholar 

  42. Ramasarma T (2007) A redox profile of vanadium. In: Aureliano M (ed) Vanadium Biochemistry. Research Signpost, pp 45–74

    Google Scholar 

  43. Das S, Chatterjee M, Janarthan M, Ramachandran H, Chatterjee M (2012) Vanadium in cancer prevention. In: Michibata H (ed) Vanadium: Biochemical and Molecular Biological Approaches. Springer, Berlin, pp 163–185

    Chapter  Google Scholar 

  44. Scibior A, Golebiowska D, Adamczyk A, Niedzwiecka I, Fornal E (2014) Biomed Res Int 2014:1–15. https://doi.org/10.1155/2014/740105

    Article  Google Scholar 

  45. Tracey AS, Willsky GR, Takeuchi ES (2007) Vanadium: Chemistry, Biochemistry, Pharmacological, and Practical Applications. CRC Press. https://doi.org/10.1201/9781420046144

    Book  Google Scholar 

  46. Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) J Biol Chem 262:6658–6662. https://doi.org/10.1016/S0021-9258(18)48292-0

    Article  CAS  PubMed  Google Scholar 

  47. Boden G (1999) Proc Assoc Am Phys 111:241–248. https://doi.org/10.1046/j.1525-1381.1999.99220.x

    Article  CAS  PubMed  Google Scholar 

  48. Melchior M, Rettig SJ, Liboiron BD, Thompson KH, Yuen VG, McNeill JH, Orvig C (2001) Inorg Chem 40:4686–4690. https://doi.org/10.1021/ic000984t

    Article  CAS  PubMed  Google Scholar 

  49. Patel N, Patel AK, Prajapati AK, Jadeja RN (2022) Syntheses, spectral characterization and antidiabetic activities of oxidovanadium (V) complexes with bi-and tridentate ligands 254–262

  50. Treviño S, González-Vergara E (2019) New J Chem 43:17850–17862. https://doi.org/10.1039/C9NJ02460C

    Article  Google Scholar 

  51. Treviño S, Sánchez-Lara E, Sarmiento-Ortega VE, Sánchez-Lombardo I, Flores-Hernández JÁ, Pérez-Benítez A, González-Vergara E (2015) J Inorg Biochem 147:85–92. https://doi.org/10.1016/j.jinorgbio.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  52. Zhang S, Kim SM (2019) Appl Organomet Chem 33:e5102. https://doi.org/10.1002/aoc.5102

    Article  CAS  Google Scholar 

  53. Sheikhshoaie I, Ebrahimipou SY, Lotfi N, Mague JT, Khaleghi M (2016) Inorganica Chim Acta 442:151–157. https://doi.org/10.1016/j.ica.2015.11.026

    Article  CAS  Google Scholar 

  54. Anitha C, Sheela CD, Tharmaraj P, Sumathi S (2012) Spectrochim Acta - A: Mol Biomol Spectrosc 96:493–500. https://doi.org/10.1016/j.saa.2012.05.053

    Article  CAS  PubMed  Google Scholar 

  55. Maia PIDS, Pavan FR, Leite CQ, Lemos SS, de Sousa GF, Batista AA, Deflon VM (2009) Polyhedron 28:398–406. https://doi.org/10.1016/j.poly.2008.11.017

    Article  CAS  Google Scholar 

  56. Renirie R, Dewilde A, Pierlot C, Wever R, Hober D, Aubry JM (2008) J appl microbiol 105:264–270. https://doi.org/10.1111/j.1365-2672.2008.03742.x

    Article  CAS  PubMed  Google Scholar 

  57. Müller WE, Schröder HC, Wang X (2019) Chem rev 119:12337–12374. https://doi.org/10.1021/acs.chemrev.9b00460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferretti VA, León IE (2022) Inorganics 10:47. https://doi.org/10.3390/inorganics10040047

    Article  CAS  Google Scholar 

  59. Elberg G, He Z, Li J, Sekar N, Shechter Y (1997) Diabetes 46:1684–1690. https://doi.org/10.2337/diab.46.11.1684

    Article  CAS  PubMed  Google Scholar 

  60. Hernández-Hernández Á, Sánchez-Yagüe J, Martı́n-Valmaseda EM, Llanillo M (1999) Free Radic Biol Med 26:1218–1230. https://doi.org/10.1016/S0891-5849(98)00306-2

    Article  PubMed  Google Scholar 

  61. McLauchlan CC, Hooker JD, Jones MA, Dymon Z, Backhus EA, Greiner BA, Manus LM (2010) J Inorg Biochem 104:274–281. https://doi.org/10.1016/j.jinorgbio.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  62. Bevan AP, Burgess JW, Yale JF, Drake PG, Lachance D, Baquiran G, Shaver A, Posner BI (1995). Am J Physiol-Endocrinol Metab. https://doi.org/10.1152/ajpendo.1995.268.1.e60

    Article  Google Scholar 

  63. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Lum BS (1994) J Biol Chem 269:4596–4604. https://doi.org/10.1016/S0021-9258(17)41818-7

    Article  CAS  PubMed  Google Scholar 

  64. Carpio D, Hernández E, Ciangherotti L, Coa C, Jiménez VV, Lubes L, Lubes VG (2018) Coord Chem Rev 372:117–140. https://doi.org/10.1016/j.ccr.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Balsa LM, Quispe P, Baran EJ, Lavecchia MJ, León IE (2020) Metallomics 12:1931–1940. https://doi.org/10.1039/d0mt00176g

    Article  CAS  PubMed  Google Scholar 

  66. León IE, Díez P, Etcheverry SB, Fuentes M (2016) Metallomics 8:739–749. https://doi.org/10.1039/c6mt00045b

    Article  PubMed  Google Scholar 

  67. García-García A, Noriega L, Meléndez-Bustamante FJ, Castro ME, Sánchez-Gaytán BL, Choquesillo-Lazarte D, González- Vergara E, Rodríguez-Diéguez A (2021) Inorganics 9:67. https://doi.org/10.3390/inorganics9090067

    Article  CAS  Google Scholar 

  68. Sedghiniya S, Soleimannejad J, Jahani Z, Davoodi J, Janczak J (2020) Acta Crystallogr B: Struct 76:85–92. https://doi.org/10.1107/S2052520619016196

    Article  CAS  Google Scholar 

  69. Sánchez-Lara E, Martínez-Valencia B, Corona-Motolinia ND, Sanchez-Gaytan BL, Castro ME, Bernès S, Méndez-Rojas MA, Meléndez-Bustamante FJ, González-Vergara E (2019) New J Chem 43:17746–17755. https://doi.org/10.1039/C9NJ02097G

    Article  Google Scholar 

  70. Bosnjakovic-Pavlovic N, Spasojevic-De-Biré A (2010) J Phys Chem A 114:10664–10675. https://doi.org/10.1021/jp100742g

    Article  CAS  PubMed  Google Scholar 

  71. Fichtner I, Claffey J, Deally A, Gleeson B, Hogan M, Markelova MR, Tacke M (2010) J Organomet Chem 695:1175–1181. https://doi.org/10.1016/j.jorganchem.2010.01.026

    Article  CAS  Google Scholar 

  72. Stohs SJ, Bagchi D (1995) Free Radic Biol Med 18:321–336. https://doi.org/10.1016/0891-5849(94)00159-H

    Article  CAS  PubMed  Google Scholar 

  73. Rodríguez MR, Balsa LM, Del Pla J, García-Tojal J, Pis-Diez R, Parajón-Costa BS, González-Baró AC (2019) New J Chem 43:11784–11794. https://doi.org/10.1039/C9NJ02092F

    Article  Google Scholar 

  74. Fioravanço LP, Pôrto JB, Martins FM, Siqueira JD, Iglesias BA, Rodrigues BM, Back DF (2023) J Inorg Biochem 239:112070. https://doi.org/10.1016/j.jinorgbio.2022.112070

    Article  CAS  PubMed  Google Scholar 

  75. Pisano M, Arru C, Serra M, Galleri G, Sanna D, Garribba E, Palmieri G, Rozzo C (2019) Metallomics 11:1687–1699. https://doi.org/10.1039/c9mt00174c

    Article  CAS  PubMed  Google Scholar 

  76. Faneca H, Figueiredo VA, Tomaz I, Gonçalves G, Avecilla F, de Lima MP, Geraldes CF, Pessoa JC, Castro MM (2009) J Inorg Biochem 103:601–608. https://doi.org/10.1016/j.jinorgbio.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  77. Wang Q, Liu TT, Fu Y, Wang K, Yang XG (2010) J Biol Inorg Chem 15:1087–1097. https://doi.org/10.1007/s00775-010-0668-4

    Article  CAS  PubMed  Google Scholar 

  78. Liu TT, Liu YJ, Wang Q, Yang XG, Wang K (2012) J Biol Inorg Chem 17:311–320. https://doi.org/10.1007/s00775-011-0852-1

    Article  CAS  PubMed  Google Scholar 

  79. Rehder D (2013) Vanadium. Its role for humans. Interrelations between essential metal ions and human diseases, 139–169. https://doi.org/10.1007/978-94-007-7500-8_5

  80. Ajaz A, Shaheen MA, Ahmed M, Munawar KS, Siddique AB, Karim A, Ahmad N, ur Rehman MF (2023) RSC Adv 13:2756–2767. https://doi.org/10.1039/d2ra07051k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parente JE, Naso LG, Jori K, Franca CA, da Costa Ferreira AM, Williams PA, Ferrer EG (2019) New J Chem 43:17603–17619. https://doi.org/10.1039/C9NJ01638D

    Article  Google Scholar 

  82. Domingo JL (2002) Biol Trace Elem Res 88:97–112. https://doi.org/10.1385/BTER:88:2:097

    Article  CAS  PubMed  Google Scholar 

  83. Anke M, Illing-Günther H, Anke S, Müller R (2013) In: S. Ermidou- Pollet, S. Pollet (Eds.), Trace Element in Human: New Perspectives, Proceedings Book, 1120–1153 Part II, Entypossis, Athens.

  84. Rehder D (2012) Future Med Chem 4:1823–1837. https://doi.org/10.4155/fmc.12.103

    Article  CAS  PubMed  Google Scholar 

  85. Rehder D (2015) Metallomics 7:730–742. https://doi.org/10.1039/c4mt00304g

    Article  CAS  PubMed  Google Scholar 

  86. Vilter H (1984) Phytochemistry 23:1387–1390. https://doi.org/10.1016/S0031-9422(00)80471-9

    Article  CAS  Google Scholar 

  87. De Boer E, Van Kooyk Y, Tromp MG, Plat H, Wever R (1986) Biophys Acta Protein Structure Molecular Enzymology 869:48–53. https://doi.org/10.1016/0167-4838(86)90308-0

    Article  Google Scholar 

  88. Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR (1986) Nature 322:388–391. https://doi.org/10.1038/322388a0

    Article  CAS  Google Scholar 

  89. Rehder D (2018) ChemTexts 4:1–7. https://doi.org/10.1007/s40828-018-0074-z

    Article  Google Scholar 

  90. Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC (2023) Int J Mol Sci 24:5382. https://doi.org/10.3390/ijms24065382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL (1995) Mol Cell Biochem 153:233–240. https://doi.org/10.1007/bf01075942

    Article  CAS  PubMed  Google Scholar 

  92. Donaldson J, Hemming R, Labella F (1985) Can J Physiol Pharmacol 63:196–199. https://doi.org/10.1139/y85-037

    Article  CAS  PubMed  Google Scholar 

  93. Vlasiou MC, Pafiti KS (2021) Anticancer Agents Med Chem 21:2111–2116. https://doi.org/10.2174/1871520621666201222143839

    Article  CAS  PubMed  Google Scholar 

  94. Soriano-Agueda L, Ortega-Moo C, Garza J, Guevara-García JA, Vargas R (2016) Comput Theor Chem 100:80–81. https://doi.org/10.1016/j.comptc.2016.06.003

    Article  CAS  Google Scholar 

  95. He R, Zeng LF, He Y, Zhang ZY (2012) New therapeutic strategies for type 2:142–176

    Article  Google Scholar 

  96. Scior T, Antonio Guevara-Garcia J, Do QT, Bernard P, Laufer S (2016) Curr med chem 23:2874–2891. https://doi.org/10.2174/0929867323666160321121138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Klebe G (2013) Drug design. Springer, Heidelberg New York Dordrecht London

    Book  Google Scholar 

  98. Levina A, Lay PA (2020) Inorg Chem 59:16143–16153. https://doi.org/10.1021/acs.inorgchem.0c00926

    Article  CAS  PubMed  Google Scholar 

  99. Pessoa JC, Correia I (2021) Inorganics 9:17. https://doi.org/10.3390/inorganics9020017

    Article  CAS  Google Scholar 

  100. Buglyó P, Kiss T, Kiss E, Sanna D, Garribba E, Micera G (2002) J Chem Soc Dalton Trans 11:2275–2282. https://doi.org/10.1039/B200688J

    Article  Google Scholar 

  101. Tolman EL, Barris E, Burns M, Pansini A, Partridge R (1979) Life Sci 25:1159–1164. https://doi.org/10.1016/0024-3205(79)90138-3

    Article  CAS  PubMed  Google Scholar 

  102. Dubyak GR, Kleinzeller A (1980) J Biol Chem 255:5306–5312

    Article  CAS  PubMed  Google Scholar 

  103. Shechter Y, Karlish SJ (1980) Nature 284:556–558. https://doi.org/10.1038/284556a0

    Article  CAS  PubMed  Google Scholar 

  104. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2016) Postepy Biochem 62:60–65

    PubMed  Google Scholar 

  105. Kordowiak A, Holko P (2009) Postepy Biol Kom 36:361–376

    Google Scholar 

  106. Treviño S, Diaz A (2020) J Inorg Biochem 208:111094. https://doi.org/10.1016/j.jinorgbio.2020.111094

    Article  CAS  PubMed  Google Scholar 

  107. Heyliger CE, Tahiliani AG, McNeill JH (1985) Science 227:1474–1477. https://doi.org/10.1126/science.3156405

    Article  CAS  PubMed  Google Scholar 

  108. Domingo JL, Gómez M (2016) Food Chem Toxicol 95:137–141

    Article  CAS  PubMed  Google Scholar 

  109. He Z, Zheng L, Zhao X, Li X, Xue H, Zhao Q, Ren B, Li N, Ni J, Zhang Y, Liu Q (2022) Biol Trace Elem Res 1:1–17. https://doi.org/10.1007/s12011-021-02938-1

    Article  CAS  Google Scholar 

  110. Lima LM, Belian MF, Silva WE, Postal K, Kostenkova K, Crans DC, Rossiter AK, da Silva Júnior VA (2021) J Inorg Biochem 216:111312. https://doi.org/10.1016/j.jinorgbio.2020.111312

    Article  CAS  PubMed  Google Scholar 

  111. UK Prospective Diabetes Study (UKPDS) Group (1998) The Lancet 352:854–865. https://doi.org/10.1016/S0140-6736(98)07037-8

    Article  Google Scholar 

  112. Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Eugenia Castro M, Meléndez-Bustamante FJ, Méndez-Rojas MA, González-Vergara E (2018) Front chem 6:402. https://doi.org/10.3389/fchem.2018.00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Damena T, Alem MB, Zeleke D, Demissie TB, Desalegn T (2023) J Mol Struct 1280:134994. https://doi.org/10.1016/j.molstruc.2023.134994

    Article  CAS  Google Scholar 

  114. Abdel-Rahman LH, Al–Farhan BS, Al Zamil NO, Noamaan MA, Ahmed HE, Adam MS (2021) Bioorg Chem. 114: 105106. Doi: https://doi.org/10.1016/j.bioorg.2021.105106

  115. Semiz S (2022) J Trace Elem Med Biol 69:126887. https://doi.org/10.1016/j.jtemb.2021.126887

    Article  CAS  PubMed  Google Scholar 

  116. Tonks NK (2006) Nat Rev Mol Cell Biol 7:833–846. https://doi.org/10.1038/nrm2039

    Article  CAS  PubMed  Google Scholar 

  117. Wang WQ, Sun JP, Zhang ZY (2003) Curr Top Med Chem 3:739–748. https://doi.org/10.2174/1568026033452302

    Article  CAS  PubMed  Google Scholar 

  118. Bhuiyan MS, Fukunaga K (2009) J Pharmacol Sci 110:1–13. https://doi.org/10.1254/jphs.09r01cr

    Article  CAS  PubMed  Google Scholar 

  119. Szydłowski M, Jabłońska E, Juszczyński P (2013) Hematologia 4:103–113

    Google Scholar 

  120. Strijdom H, Chamane N, Lochner A (2009) Cardiovasc J Afr 20:303–310

    PubMed  PubMed Central  Google Scholar 

  121. Pasławska U, Kurzok H, Kiczak L, Bania J (2012) Med Wet 68:349–352

    Google Scholar 

  122. Rehder D (2013) Vanadium. Its role in humans. In: Sigel A, Sigel H, Sigel RK (eds) Interrelations between Essential Metal Ions and Human Diseases. Springer, London, pp 139–167

    Chapter  Google Scholar 

  123. Pessoa JC, Etcheverry S, Gambino D (2015) Coord Chem Rev 301:24–48. https://doi.org/10.1016/j.ccr.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  124. Fazilet GÖ, Suat EK (2022) Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5: 1843–1854. https://doi.org/10.47495/okufbed.1060675

  125. Yamase T, Ishikawa E, Fukaya K, Nojiri H, Taniguchi T, Atake T (2004) Inorg Chem 43:8150–8157. https://doi.org/10.1021/ic049669n

    Article  CAS  PubMed  Google Scholar 

  126. Wong SY, Sun RW, Chung NP, Lin CL, Che CM (2005) Chem Commun 28(3544–3):546. https://doi.org/10.1039/B503535J

    Article  Google Scholar 

  127. Ross A, Soares DC, Covelli D, Pannecouque C, Budd L, Collins A, Robertson N, Parsons S, De Clercq E, Kennepohl P, Sadler PJ (2010) Inorg Chem 49:1122–1132. https://doi.org/10.1021/ic9020614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y (2020) Nature 582:289–293. https://doi.org/10.1038/s41586-020-2223-y

    Article  CAS  PubMed  Google Scholar 

  129. Scior T, Abdallah HH, Mustafa SF, Guevara-García JA, Rehder D (2021) Inorganica chim acta 519:120287. https://doi.org/10.1016/j.ica.2021.120287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ahmed M, Schwendt P, Sivá M, Marek J (2004) Transit Met Chem 29:675–680. https://doi.org/10.1007/s11243-004-5363-2

    Article  CAS  Google Scholar 

  131. Köpf-Maier P, Köpf H (1986) Drugs Future 11:297–319

    Article  Google Scholar 

  132. D’Cruz OJ, Uckun FM (2002) Expert Opin Investig Drugs 11:1829–1836. https://doi.org/10.1517/13543784.11.12.1829

    Article  PubMed  Google Scholar 

  133. Faneca H, Figueiredo VA, Tomaz I, Gonçalves G, Avecilla F, de Lima MP, Geraldes CF, Pessoa JC, Castro MM (2009) Inorg Biochem 103:601–608. https://doi.org/10.1016/j.jinorgbio.2008.11.004

    Article  CAS  Google Scholar 

  134. Lewis NA, Liu F, Seymour L, Magnusen A, Erves TR, Arca JF, Beckford FA, Venkatraman R, González-Sarrías A, Fronczek FR, Van Derveer DG, Seeram NP, Liu A, Jarrett WL, Holder AA (2012). Eur J Inorg Chem. https://doi.org/10.1002/ejic.201100898

    Article  PubMed  Google Scholar 

  135. Lu LP, Liu JH, Cen SH, Jiang YL, Hu GQ (2019) Bioorganic Med Chem Lett 29:681–683. https://doi.org/10.1016/j.bmcl.2018.10.004

    Article  CAS  Google Scholar 

  136. McGowan JP, Shah SS (2000) J Antimicrob Chemother 46:657–668. https://doi.org/10.1093/jac/46.5.657

    Article  CAS  PubMed  Google Scholar 

  137. Parker WB (2009) Chem Rev 109:2880–2893. https://doi.org/10.1021/cr900028p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Silva-Nolasco AM, Camacho L, Saavedra-Díaz RO, Hernández-Abreu O, León IE, Sánchez-Lombardo I (2020) Inorganics 8:67. https://doi.org/10.3390/inorganics8120067

    Article  CAS  Google Scholar 

  139. Roy S, Banerjee S, Chakraborty T (2018) Biometals 31:647–671. https://doi.org/10.1007/s10534-018-0117-3

    Article  CAS  PubMed  Google Scholar 

  140. Ścibior A (2022) Antioxidants 11:790. https://doi.org/10.3390/antiox11040790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Basaleh AS, Alomari FY, Sharfalddin AA, Al-Radadi NS, Domyati D, Hussien MA (2022) Molecules 27:2796. https://doi.org/10.3390/molecules27092796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alshehri NS, Sharfalddin AA, Domyati D, Basaleh AS, Hussien MA (2022) J Indian Chem Soc 99:100692. https://doi.org/10.1016/j.jics.2022.100692

    Article  CAS  Google Scholar 

  143. Hadjiadamou I, Vlasiou M, Spanou S, Simos Y, Papanastasiou G, Kontargiris E, Dhima I, Ragos V, Karkabounas S, Drouza C, Keramidas AD (2020) J Inorg Biochem 208:111074. https://doi.org/10.1016/j.jinorgbio.2020.111074

    Article  CAS  PubMed  Google Scholar 

  144. Ayoola GA, Coker HA, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, Atangbayila TO (2008) Trop J Pharm Res 7:1019–1024. https://doi.org/10.4314/tjpr.v7i3.14686

    Article  Google Scholar 

  145. Akila E, Usharani M, Rajavel R (2013) Int J Pharm Pharm Sci 5:573–581

    Google Scholar 

  146. Sanna D, Palomba J, Lubinu G, Buglyo P, Nagy S, Perdih F, Garribba E (2018) J Med Chem 62:654–664. https://doi.org/10.1021/acs.jmedchem.8b01330

    Article  CAS  PubMed  Google Scholar 

  147. Ugone V, Sanna D, Ruggiu S, Sciortino G, Garribba E (2021) Inorg Chem Front 8:1189–1196. https://doi.org/10.1039/D0QI01308K

    Article  CAS  Google Scholar 

  148. Mohammadtabar F, Shafaatian B, Soleymanpour A, Rezvani SA, Notash B (2016) Transit Met Chem 41:475–484. https://doi.org/10.1007/s11243-016-0043-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

1- Anand Pratap Singh, Ishwar Chandra Maurya, and Sutapa Roy write the main manuscript text. 2-All figures prepared by Anand Pratap Singh and Ishwar Chandra Maurya.

Corresponding authors

Correspondence to Sutapa Roy or Ishwar Chandra Maurya.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of financial or personal interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.P., Roy, S. & Maurya, I.C. Vanadium complexes: potential candidates for therapeutic applications. Transit Met Chem 49, 101–119 (2024). https://doi.org/10.1007/s11243-023-00565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00565-4

Navigation