Skip to main content
Log in

The rate of substitution from η6-arene ruthenium(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The rate and mechanism of substitution in the Ru(II) complexes (C1–C6) by thiourea nucleophiles was studied at pH 2 and rate constants measured as a function of nucleophile concentrations and temperature using spectrometric methods. There is increased electron density at the Ru metal atom of C2 as a result of inductive donation by substituents on the arene ligand, making it less positive and therefore less reactive than C1. For the complexes C3–C6 bearing the 2,2′-bipyridyl ligand, the aqua ligands are located trans to the arene ligands, and hence, their reactivity increases in accordance to the number and type of alkyl substituents on the η6-arene ligands which donate inductively into the π-molecular orbitals, causing increased trans labialisation of the coordinated aquo co-ligand. Compared to the reactivity of triaquo complex (C1), the auxiliary bipyridyl ligand of (C3) complex lowers the rate of substitution for the later complex by a factor of about 100, possibly due to its steric hindrance at the Ru(II) metal centre. The significantly negative activation entropies and positive activation enthalpies suggest an associative mode of substitution. The reactivity of the nucleophiles follow the order DMTU > TU > TMTU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Reedijk J (2003) Proc Natl Acad Sci 100:3611

    CAS  PubMed  Google Scholar 

  2. Zhao Y, He W, Shi P, Zhu J, Qiu L, Lin L, Guo Z (2006) Dalton Trans 22:2617–2619

    Google Scholar 

  3. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) Biochemistry 42:11544–11554

    CAS  PubMed  Google Scholar 

  4. Montero EI, Pérez JM, Schwartz A, Fuertes MA, Malinge JM, Alonso C, Leng M, Navarro-Ranninger C (2002) ChemBioChem 3:61–67

    CAS  PubMed  Google Scholar 

  5. Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) Arch Biochem Biophys 376:156–162

    CAS  PubMed  Google Scholar 

  6. Singh SK, Joshi S, Singh AR, Saxena JK, Pandey KD (2007) Inorg Chem 46(25):10869–10876

    CAS  PubMed  Google Scholar 

  7. Siddik ZH (2003) Oncogene 22:7265–7279

    CAS  PubMed  Google Scholar 

  8. Han Ang W, Dyson PJ (2006) Eur J Inorg Chem 2006:4003–4018

    Google Scholar 

  9. Wang F, Chen H, Parsons S, Oswald IDH, Davidson JE, Sadler PJ (2003) Chem A Eur J 9:5810–5820

    CAS  Google Scholar 

  10. Jiang C-W, Chao H, Li H, Ji L-N (2003) J Inorg Biochem 93:247–255

    CAS  PubMed  Google Scholar 

  11. Beck JL, Gupta R, Urathamakul T, Williamson NL, Sheil MM, Aldrich-Wright JR, Ralph SF (2003) Chem Commun 5:626–627

    Google Scholar 

  12. Ambroise A, Maiya BG (2000) Inorg Chem 39:4264–4272

    CAS  PubMed  Google Scholar 

  13. Hartinger CG, Dyson PJ (2009) Chem Soc Rev 38:391–401

    CAS  PubMed  Google Scholar 

  14. Groessl M, Hartinger CG, Połeć-Pawlak K, Jarosz M, Dyson PJ, Keppler BK (2008) Chem Biodivers 5:1609–1614

    CAS  PubMed  Google Scholar 

  15. Dyson PJ, Sava G (2006) Dalton Trans 16:1929–1933

    Google Scholar 

  16. Morris RE, Aird RE, Murdoch Pdel S, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) J Med Chem 44:3616–3621

    CAS  PubMed  Google Scholar 

  17. Novakova O, Malina J, Suchankova T, Kasparkova J, Bugarcic T, Sadler PJ, Brabec V (2010) Chem A Eur J 16:5744–5754

    CAS  Google Scholar 

  18. Smalley KSM, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS, Bregman H, Flaherty KT, Soengas MS, Meggers R, Herlyn M (2007) Can Res 67:209–217

    CAS  Google Scholar 

  19. Magennis WS, Habtemariam A, Novakova O, Henry JB, Meier S, Parsons S, Oswald IDH, Brabec V, Sadler PJ (2007) Inorg Chem 46:5059–5068

    CAS  PubMed  Google Scholar 

  20. Scolaro C, Chaplin AB, Hartinger CG, Bergamo A, Cocchietto M, Keppler KB, Sava G, Dyson PJ (2007) Dalton Trans 43:5065–5072

    Google Scholar 

  21. Lo KK-W, Lee TK-M (2004) Inorg Chem 43:5275–5282

    CAS  PubMed  Google Scholar 

  22. Peacock AF, Habtemariam A, Fernández R, Walland V, Fabbiani FP, Parsons S, Aird RE, Jodrell DI, Sadler PJ (2006) J Am Chem Soc 128:1739–1748

    CAS  PubMed  Google Scholar 

  23. Liu Y, Hammitt R, Lutterman DA, Joyce LE, Thummel RP, Turro C (2009) Inorg Chem 48:375–385

    CAS  PubMed  Google Scholar 

  24. Chatterjee S, Kundu S, Bhattacharyya A, Hartinger CG, Dyson PJ (2008) J Biol Inorg Chem 13:1149–1155

    CAS  PubMed  Google Scholar 

  25. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) Br J Cancer 86:1652–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Novakova O, Kasparkova J, Bursova V, Hofr C, Vojtiskova M, Chen H, Sadler PJ, Brabec V (2005) Chem Biol 12:121–129

    CAS  PubMed  Google Scholar 

  27. Liu HK, Sadler PJ (2011) Acc Chem Res 44:349–359

    CAS  PubMed  Google Scholar 

  28. Kumar P, Gupta RK, Pandey DS (2014) Chem Soc Rev 43:707–733

    CAS  PubMed  Google Scholar 

  29. Ang WH, Daldini E, Scolaro C, Scopelliti R, Juillerat-Jeannerat L, Dyson PJ (2006) Inorg Chem 45:9006–9013

    CAS  PubMed  Google Scholar 

  30. Wesselinova D, Kaloyanov N, Dimitrov G (2009) J Med Chem 44:5099–5102

    CAS  Google Scholar 

  31. Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dayan O, Dayan S, Kani I, Çetinkaya B (2012) Appl Organomet Chem 26:663–670

    CAS  Google Scholar 

  33. Enos G, Mambanda A, Jaganyi D (2013) J Coord Chem 66:4280–4291

    CAS  Google Scholar 

  34. Bugarčić ŽD, Petrović BV, Jelić R (2001) Transition Met Chem 26:668–671

    Google Scholar 

  35. Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50:8984–8996

    CAS  PubMed  Google Scholar 

  36. Jaganyi D, Tiba F, Munro OQ, Petrović B, Bugarčić ŽD (2006) Dalton Trans 24:2943–2949

    Google Scholar 

  37. Mambanda A, Jaganyi D (2011) Dalton Trans 40:79–91

    CAS  PubMed  Google Scholar 

  38. Gaussian RA (2009) Inc., Wallingford CT 121:150–166

  39. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  42. Okamura M, Yoshida M, Kuga R, Sakai K, Kondo M, Masaoka S (2012) Dalton Trans 41:13081–13089

    CAS  PubMed  Google Scholar 

  43. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    CAS  PubMed  Google Scholar 

  44. Le Bahers T, Pauporté T, Scalmani G, Adamo C, Ciofini I (2009) Phys Chem Chem Phys 11:11276–11284

    PubMed  Google Scholar 

  45. Shaira A, Jaganyi D (2014) J Coord Chem 67:2843–2857

    CAS  Google Scholar 

  46. Chattaraj PK, Sarkar U, Elango M, Parthasarathi R, Subramanian V (2005) arXiv preprint physics/0509089

  47. Cedillo A, Contreras R (2012) J Mex Chem Soc 56(3):257–260

    CAS  Google Scholar 

  48. Weinhold F, Landis CR, Glendening ED (2016) Int Rev Phys Chem 35(3):399–440

    CAS  Google Scholar 

  49. Parr RG, Yang W (1989) J Chem Phys 98:5648

    Google Scholar 

  50. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    CAS  Google Scholar 

  51. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  52. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    CAS  PubMed  Google Scholar 

  53. Sangilipandi S, Sutradhar D, Bhattacharjee K, Kaminsky W, Joshi SR, Chandra AK, Rao KM (2016) Inorg Chim Acta 441:95–108

    CAS  Google Scholar 

  54. Warren SG, Clayden J (2001) Solutions manual to accompany organic chemistry by Clayden, Greeves, Warren, and Wothers. Oxford University Press, Oxford

    Google Scholar 

  55. Dadci L, Elias H, Frey U, Hoernig A, Koelle U, Merbach AE, Paulus H, Schneider JS (1995) Inorg Chem 34:306–315

    CAS  Google Scholar 

  56. Tripathy SK, De U, Dehury N, Pal S, Kim HS, Patra S (2014) Dalton Trans 43:14546–14549

    CAS  PubMed  Google Scholar 

  57. Tiba F, Jaganyi D, Mambanda A (2010) J Coord Chem 63:2542–2560

    CAS  Google Scholar 

  58. Wekesa IM, Jaganyi D (2014) Dalton Trans 43:2549–2558

    CAS  PubMed  Google Scholar 

  59. Mebi CA (2011) J Chem Sci 123:727–731

    CAS  Google Scholar 

  60. Vektariene A, Vektaris G, Svoboda J (2009) ARKIVOC Online J Organ Chem 7:311–329

    Google Scholar 

  61. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  62. Liu S (2005) J Chem Sci 117:477–483

    CAS  Google Scholar 

  63. Coe BJ, Glenwright SJ (2000) Coord Chem Rev 203:5–80

    CAS  Google Scholar 

  64. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  65. Jaganyi D, Sitati MK, Wekesa IM (2016) Inorg Chim Acta 453:531–537

    CAS  Google Scholar 

  66. Asman WP, Jaganyi D (2017) Int J Chem Kinet 49:545–561

    CAS  Google Scholar 

  67. Petrović B, Bugarčić ZID, Dees A, Ivanović-Burmazović I, Heinemann FW, Puchta R, Steinmann SN, Corminboeuf C, Van Eldik R (2012) Inorg Chem 51:1516–1529

    PubMed  Google Scholar 

  68. Milutinović MM, Elmroth SKC, Davidović G, Rilak A, Klisurić OR, Bratsos I, Bugarčić ŽD (2017) Dalton Trans 46:2360–2369

    PubMed  Google Scholar 

  69. Rilak A, Bratsos I, Zangrando E, Kljun J, Turel I, Bugarčić ŽD, Alessio E (2014) Inorg Chem 53:6113–6126

    CAS  PubMed  Google Scholar 

  70. Milutinović MM, Rilak A, Bratsos I, Klisurić O, Vraneš M, Gligorijević N, Radulović S, Bugarčić ŽD (2017) J Inorg Biochem 169:1–12

    PubMed  Google Scholar 

  71. Chrzanowska M, Katafias A, Impert O, Kozakiewicz A, Surdykowski A, Brzozowska P, Franke A, Zahl A, Puchta R, van Eldik R (2017) Dalton Trans 46:10264–10280

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the University of KwaZulu-Natal, South Africa. We also thank Mr Craig Grimmer for his support with NMR measurements and Mrs Caryl Janse Van Rensburg for her help with mass spectra and elemental analyses.

Funding

Funding was provided by South African Agency for Science and Technology Advancement and University of KwaZulu-Natal (Inyuvesi Yakwazulu-Natali).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deogratius Jaganyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest as far as this work is concerned.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitati, M.K., Jaganyi, D. & Mambanda, A. The rate of substitution from η6-arene ruthenium(II) complexes. Transit Met Chem 45, 305–315 (2020). https://doi.org/10.1007/s11243-020-00380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00380-1

Navigation