Skip to main content
Log in

Synthesis, structures and magnetic properties of four 3D heterometallic cobalt(II)–barium(II) coordination polymers

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four heterometallic complexes, namely {[CoBa(2,5-pdc)2(H2O)3]n·2nH2O} (1), [CoBa(2,5-pdc)2(H2O)4]n (2), [CoBa(2,5-pdc)2(H2O)5]n (3) and [CoBa2(2,5-pdc)32-H2O)2(H2O)4]n (4) (2,5-H2pdc = pyridine-2,5-dicarboxylic acid), have been hydrothermally synthesized and characterized both structurally and magnetically. All four complexes exhibit 3D frameworks, in which the Co(II) centers are chelated by pyridine nitrogen and carboxyl oxygen atoms in a five-membered ring. The Ba(II) centers are chelated and bridged by carboxyl oxygen atoms to extend the structures into 3D frameworks. The networks of the complexes can be controlled via rationally choosing the appropriate ligand and tuning the ratio of the two types of metal centers. The magnetic properties of complexes 1, 2 and 4 have been investigated from 2 to 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Y, She S, Gao Q, Gao D, Wang D, Li Y, Liu W, Li W (2014) CrystEngComm 16:1091–1102

    Article  CAS  Google Scholar 

  2. Saha D, Hazra DK, Maity T, Koner S (2016) Inorg Chem 55:5729–5731

    Article  CAS  PubMed  Google Scholar 

  3. Ferrando-Soria J, Rood MTM, Julve M, Lioret F, Journaux Y, Pasan J, Ruiz-Perez C, Fabelo O, Pardo E (2012) CrystEngComm 14:761–764

    Article  CAS  Google Scholar 

  4. Huang Y-Q, Wan Y, Chen H-Y, Wang Y, Zhao Y, Xiao X-F (2016) New J Chem 40:7587–7595

    Article  CAS  Google Scholar 

  5. Sun Q-Z, Yin Y-B, Chai L-Y, Liu H, Hao P-F, Yan X-P, Guo Y-Q (2014) J Mol Struct 1070:75–79

    Article  CAS  Google Scholar 

  6. Chen Y, Zheng L, She S, Chen Z, Hu B, Li Y (2011) Dalton Trans 40:4970–4975

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y-Y, Zhang X, Yao Y-G (2013) Inorg Chim Acta 397:38–41

    Article  CAS  Google Scholar 

  8. Sun Q-Z, Yin Y-B, Pan J-Q, Chai L-Y, Su N, Liu H, Zhao Y-L, Liu X-T (2016) J Mol Struct 1106:64–69

    Article  CAS  Google Scholar 

  9. Zhang X, Huang YY, Cheng JK, Yao YG, Zhang J, Wang F (2012) CrystEngComm 14:4843–4849

    Article  CAS  Google Scholar 

  10. Zhang X, Huang YY, Lin QP, Zhang J, Yao YG (2013) Dalton Trans 42:2294–2301

    Article  CAS  PubMed  Google Scholar 

  11. Cao K-L, Xia Y, Wang G-X, Feng Y-L (2015) Inorg Chem Commun 53:42–45

    Article  CAS  Google Scholar 

  12. Yu K, Wan B, Yu Y, Wang L, Su Z-H, Wang C-M, Wang C-X, Zhou B-B (2012) Inorg Chem 52:485–498

    Article  CAS  PubMed  Google Scholar 

  13. Cui H-H, Lin C-S, Shen N-N, Huang X-Y (2016) Inorg Chem Commun 70:86–89

    Article  CAS  Google Scholar 

  14. Hu X-L, Sun C-Y, Qin C, Wang X-L, Wang H-N, Zhou E-L, Li W-E, Su Z-M (2013) Chem Commun 49:3564–3566

    Article  CAS  Google Scholar 

  15. Zhang D-J, Zhang R-C, Wang J-J, Qiao W-Z, Jing X-M (2013) Inorg Chem Commun 32:47–50

    Article  CAS  Google Scholar 

  16. Thuery P (2013) CrystEngComm 15:6533–6545

    Article  CAS  Google Scholar 

  17. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  18. Das B, Baruah JB (2010) Inorg Chim Acta 363:1479–1487

    Article  CAS  Google Scholar 

  19. Derikvand Z, Bruno G, Rudbari HA, Shokrollahi A, Zarghampour F, Azadbakht A (2014) Inorg Chim Acta 410:221–229

    Article  CAS  Google Scholar 

  20. Liang L-L, Ren S-B, Wang J, Zhang J, Li Y-Z, Du H-B, You X-Z (2010) CrystEngComm 12:2669–2671

    Article  CAS  Google Scholar 

  21. Wang HL, Zhang DP, Sun DF, Chen RT, Zhang LF, Tian LJ, Jiang JZ, Ni ZH (2009) Cryst Growth Des 9:5273–5282

    Article  CAS  Google Scholar 

  22. Wang X-Y, Sevov SC (2008) Inorg Chem 47:1037–1043

    Article  CAS  PubMed  Google Scholar 

  23. Rueff J-M, Masciocchi N, Rabu P, Sironi A, Skoulios A (2001) Eur J Inorg Chem. https://doi.org/10.1002/1099-0682(200111)2001:11<2843::AID-EJIC2843>3.0.CO;2-T

    Article  Google Scholar 

  24. Rueff J-M, Masciocchi N, Rabu P, Sironi A, Skoulios A (2002) Chem Eur J 8:1813–1820

    Article  CAS  PubMed  Google Scholar 

  25. Majumder A, Gramlich V, Rosair GM, Batten SR, Masuda JD, Fallah MSE, Ribas J, Sutter J-P, Desplanches C, Mitra S (2006) Cryst Growth Des 6:2355–2368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Opening Foundation of the Chinese National Engineering Research Center for Control and Treatment of Heavy metal Pollution, Changsha, 410083, China (No. 2015CNERC-CTHMP-12), the Major Science and Technology Planning Project of Hunan Province, China (2013FJ1009) and the Natural Science Foundation of China (Nos. 51604307 and 21271189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, QZ., Lu, JF., Chai, LY. et al. Synthesis, structures and magnetic properties of four 3D heterometallic cobalt(II)–barium(II) coordination polymers. Transit Met Chem 43, 439–450 (2018). https://doi.org/10.1007/s11243-018-0231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0231-7

Navigation