Skip to main content

Advertisement

Log in

Investigation of the mechanism of oxidation of l-cystine by diperiodatoargentate(III) in aqueous alkaline medium by stopped flow technique

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of l-cystine by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction exhibits a 1:2 stoichiometry (l-cys:DPA) and is first order in [DPA]. The order in both [l-cystine] and [alkali] changes from first to zero order as their concentrations increase. Added periodate retards the rate of reaction. The effects of added products have been investigated. The active species of silver(III) is identified as monoperiodatoargentate(III) (MPA). The oxidation is thought to proceed via an MPA–l-cystine complex, which decomposes in a rate-determining step to give a free radical followed by a fast step to give the products. The products were identified by spot test, IR and GC–MS. The reaction constants involved in different steps of the mechanism were evaluated. The activation parameters with respect to the slow step of the mechanism were computed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahadevappa DS, Rangappa KS, Gowda NM, Thimmegowda B (1986) Int J Chem Kinet 60:589

    Google Scholar 

  2. Mohanti MK, Laloo D (1990) J Chem Soc Dalton Trans 311

  3. Balreddy K, Sethuram B, Navaneeth Rao T (1981) Indian J Chem 20A:395

    Google Scholar 

  4. Rennie MJ (1999) Physical exertion protein and amino acids. National Academy Press, Washington p 243

    Google Scholar 

  5. Sethuram B (2003) Some aspects of electron transfer reactions involving organic molecules Allied Publishers (P) Ltd, New Delhi. p 151

  6. Jaiswal PK, Yadav KL (1970) Talanta 17:236

    Article  CAS  Google Scholar 

  7. Jaiswal PK (1972) Analyst 1:503

    CAS  Google Scholar 

  8. Jayaprakash Rao P, Sethuram B, Navaneeth Rao T (1985) React Kinet Catal 29:289

    Article  Google Scholar 

  9. Kumar A, Kumar P, Ramamurthy P (1999) Polyhedron 18:773

    Article  CAS  Google Scholar 

  10. Kumar A, Kumar P (1999) J Phys Org Chem 12:79

    Article  CAS  Google Scholar 

  11. Kumar A, Vaishali, Ramamurthy P (2000) Int J Chem Kinet 32:286

    Article  CAS  Google Scholar 

  12. Panigrahi GP, Misro PK (1977) Ind J Chem A15:1066

    Google Scholar 

  13. Cohen GL, Atkinson G (1964) Inorg Chem 3:1741

    Article  CAS  Google Scholar 

  14. Hosamani RR, Shetti NP, Nandibewoor ST (2009) J Phys Org Chem 22:234

    Article  CAS  Google Scholar 

  15. Jeffery GH, Bassett J, Mendham J, Denney RC (1996) Vogel’s textbook of quantitative chemical analysis. 5th edn, Longmans Singapore Publishers Pte Ltd, Singapore, p 467, 391

  16. Fiegl F (1975) Spot tests in organic analysis. Elsevier, New York, p 195

    Google Scholar 

  17. Ref. 15, p 679

  18. Vogel AI (1973) A text book of practical organic chemistry including quantitative organic analysis, 3rd Ed. (Longman), p 332

  19. Frost AA, Pearson RG (1970) Kinetics and mechanism. Wiley Eastern Ltd, New Delhi, p 367

    Google Scholar 

  20. Krishenbaum LJ, Mrozowski L (1978) Inorg Chem 17:3718

    Article  Google Scholar 

  21. Banerjee R, Das K, Das A, Dasgupta S (1989) Inorg Chem 28:585

    Article  CAS  Google Scholar 

  22. Banerjee R, Das R, Mukhopadhyay S (1992) J Chem Soc Dalton Trans 1317

  23. Crouthamel CE, Hayes AM, Martin DS (1951) J Am Chem Soc 73:82

    Article  CAS  Google Scholar 

  24. Bilehal DC, Kulkarni RM, Nandibewoor ST (2002) Inorg React Mech 4:103

    Article  CAS  Google Scholar 

  25. Seregar VC, Hiremath CV, Nandibewoor ST (2006) Z Phys Chem 220:615

    CAS  Google Scholar 

  26. Rangappa KS, Raghavendra MP, Mahadevappa DS, Channegouda D (1998) J Org Chem 63:531

    Article  CAS  Google Scholar 

  27. Weissberger A, Lewis ES (1974) Investigation of Rates and Mechanism of Reactions in Techniques of Chemistry, Vol 4, Wiley, New York, p 421

  28. Martinez M, Pitarque MA, Eldik RV (1996) J Chem Soc Dalton Trans 2665

  29. Lewis ES (1974) Investigations of rates and mechanisms of reactions, 3rd edn. Wiley, New York, p 415

    Google Scholar 

  30. Exner O (1972) Coll Czech Chem Commun 37:1425

    CAS  Google Scholar 

  31. Leffler JE (1955) J Org Chem 20:1202

    Article  CAS  Google Scholar 

  32. Kulkarni SD, Nandibewoor ST (2008) Transition Met Chem 33:23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Appendix

Appendix

According to Scheme 1.

$$ \begin{gathered} {\frac{{ - {\text{d[DPA]}}}}{\text{dt}}} = {\text{k[C]}} = {\frac{{{\text{kK}}_{ 1} {\text{K}}_{ 2} {\text{K}}_{ 3} [ {\text{DPA][OH}}^{ - } ] [ {\text{{\sc l}\hbox{-}cys]}}}}{{[{\text{H}}_{3} {{\text{IO}}_{6}^{}}^{2 - } ]}}} \hfill \\ [ {\text{DPA]}}_{\text{T}} = [ {\text{DPA]}}_{\text{f}} + [ {\text{Ag(H}}_{ 3} {\text{IO}}_{ 6} ) ( {\text{H}}_{ 2} {\text{IO}}_{ 6} ) ]^{ 2- } + [ {\text{Ag(H}}_{ 2} {\text{IO}}_{ 6} ) ( {\text{H}}_{ 2} {\text{O)}}_{ 2} ]+ [ {\text{C]}} \hfill \\ \end{gathered} $$
(1)

where T and f refer to total and free concentrations.

$$ \begin{gathered} = {\text{[DPA]}}_{\text{f}} {\text{\{1}} + {\text{K}}_{ 1} [ {\text{OH}}^{ - } ]+ {\frac{{{\text{K}}_{ 1} {\text{K}}_{ 2} [ {\text{OH}}^{ - } ]}}{{ [ {\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - } ]}}} + {\frac{{{\text{K}}_{ 1} {\text{K}}_{ 2} {\text{K}}_{ 3} [ {\text{OH}}^{ - } ] [ {\text{{\sc l}\hbox{-}cys]}}}}{{ [ {\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - } ]}}} \hfill \\ [ {\text{DPA]}}_{\text{f}} = {\frac{{ [ {\text{DPA]}}_{\text{T}} [ {\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - } ]}}{[{{\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - }] + {\text{K}}_{ 1} [ {\text{OH}}^{ - } ] [ {\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - } ]+ {\text{K}}_{ 1} {\text{K}}_{ 2} [ {\text{OH}}^{ - } ]+ {\text{K}}_{ 1} {\text{K}}_{ 2} {\text{K}}_{ 3} [ {\text{OH}}^{ - } ] [ {\text{{\sc l}\hbox{-}cys]}}}}}. \hfill \\ \end{gathered} $$
(2)
$$ {\text{Similarly}},\; [ {\text{OH]}}_{\text{T}} = {\text{[OH]}}_{\text{f}} + [ {\text{Ag(H}}_{ 3} {\text{IO}}_{ 6} ) ( {\text{H}}_{ 2} {\text{IO}}_{ 6} ) ]^{ 2- } + [ {\text{Ag(H}}_{ 2} {\text{IO}}_{ 6} ) ( {\text{H}}_{ 2} {\text{O)}}_{ 2} ] $$
$$ = {\text{[OH]}}_{\text{f}} + {\text{K}}_{ 1} [ {\text{DPA] [OH}}^{ - } ]+ {\frac{{{\text{K}}_{ 1} {\text{K}}_{ 2} [ {\text{DPA][OH}}^{ - } ]}}{{[{\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - }] }}}. $$

In view of the low concentration of DPA and H3IO6 2− used,

$$ \begin{aligned} [{\text{OH}}]_{\text{T}} = & [{\text{OH}}]_{\text{f}} \\ [{\text{{\sc l}\hbox{-}cys}}]_{\text{T}} = & [{\text{{\sc l}\hbox{-}cys}}]_{\text{f}} + [{\text{C}}] \\ = & [{\text{{\sc l}\hbox{-}cys}}]_{\text{f}} + {\frac{{{\text{K}}_{1} {\text{K}}_{2} {\text{K}}_{3} [{\text{DPA}}] \, [{\text{OH}}^{ - } ][{\text{{\sc l}\hbox{-}cys}}]}}{{ [ {\text{H}}_{3} {{\text{IO}}_{6}^{}}^{2 - } ]}}}. \\ \end{aligned} $$
(3)

In view of the low concentration of DPA, OH and H3IO6 2− used,

$$ [ {\text{{\sc l}\hbox{-}cys]}}_{\text{T}} {\text{ = [{\text{{\sc l}\hbox{-}cys}}]}}_{\text{f}} . $$
(4)

Substituting (2), (3) and (4) in (1) and omitting the subscripts T and f, we get

$$ {\text{Rate}}={\frac{{{\text{k K}}_{ 1} {\text{K}}_{ 2} {\text{K}}_{ 3} {\text{ [DPA][{\text{{\sc l}\hbox{-}cys}}] [OH}}^{ - } ]}}{[{{\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - }] + {\text{K}}_{ 1} [ {\text{OH}}^{ - } ] [ {\text{H}}_{ 3} {{\text{IO}}_{6}^{}}^{2 - } ] + {\text{K}}_{ 1} {\text{K}}_{ 2} [ {\text{OH}}^{ - } ]+ {\text{K}}_{ 1} {\text{K}}_{ 2} {\text{K}}_{ 3} [ {\text{OH}}^{ - } ][{\text{{\sc l}\hbox{-}cys}}]}}}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seregar, V.C., Hosamani, R.R. & Nandibewoor, S.T. Investigation of the mechanism of oxidation of l-cystine by diperiodatoargentate(III) in aqueous alkaline medium by stopped flow technique. Transition Met Chem 35, 55–63 (2010). https://doi.org/10.1007/s11243-009-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9295-8

Keywords

Navigation