Skip to main content

Advertisement

Log in

Microfluidics for Porous Systems: Fabrication, Microscopy and Applications

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

No matter how sophisticated the structures are and on what length scale the pore sizes are, fluid displacement in porous media can be visualized, captured, mimicked and optimized using microfluidics. Visualizing transport processes is fundamental to our understanding of complex hydrogeological systems, petroleum production, medical science applications and other engineering applications. Microfluidics is an ideal tool for visual observation of flow at high temporal and spatial resolution. Experiments are typically fast, as sample volume is substantially low with the use of miniaturized devices. This review first discusses the fabrication techniques for generating microfluidics devices, experimental setups and new advances in microfluidic fabrication using three-dimensional printing, geomaterials and biomaterials. We then address multiphase transport in subsurface porous media, with an emphasis on hydrology and petroleum engineering applications in the past few decades. We also cover the application of microfluidics to study membrane systems in biomedical science and particle sorting. Lastly, we explore how synergies across different disciplines can lead to innovations in this field. A number of problems that have been resolved, topics that are under investigation and cutting-edge applications that are emerging are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Ahmed, F.E., Lalia, B.S., Hashaikeh, R.: A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356, 15–30 (2015)

    Google Scholar 

  • Alagorni, A.H., Yaacob, Z., Nour, A.H.: An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection. Int. J. Environ. Sci. Dev. 6(9), 693–701 (2015)

    Google Scholar 

  • Albani, J.R.: Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Albaugh, K.B.: Electrode phenomena during anodic bonding of silicon to sodium borosilicate glass. J. Electrochem. Soc. 138(10), 3089–3094 (1991)

    Google Scholar 

  • Alzahid, Y., et al.: Alkaline surfactant polymer flooding: what happens at the pore scale? In: SPE Europec Featured at 79th EAGE Conference and Exhibition. Society of Petroleum Engineers (2017)

  • Alzahid, Y.A., et al.: Functionalisation of polydimethylsiloxane (PDMS)—microfluidic devices coated with rock minerals. Sci. Rep. 8(1), 15518 (2018)

    Google Scholar 

  • Alzahid, Y.A., Mostaghimi, P., Walsh, S.D.C., Armstrong, R.T.: Flow regimes during surfactant flooding: the influence of phase behaviour. Fuel 236, 851–860 (2019)

    Google Scholar 

  • Amirian, T., Haghighi, M., Mostaghimi, P.: Pore scale visualization of low salinity water flooding as an enhanced oil recovery method. Energy Fuels 31, 13133–13143 (2017)

    Google Scholar 

  • Anbari, A., et al.: Microfluidic model porous media: fabrication and applications. Small 14(18), 1703575 (2018)

    Google Scholar 

  • Armstrong, R.T., Berg, S.: Interfacial velocities and capillary pressure gradients during Haines jumps. Phys. Rev. E 88(4), 043010 (2013)

    Google Scholar 

  • Atencia, J., Beebe, D.: Controlled microfluidic interfaces. Nature 437, 648–655 (2005)

    Google Scholar 

  • Bachu, S.: Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41(9), 953–970 (2000)

    Google Scholar 

  • Barisam, M., Saidi, M., Kashaninejad, N., Vadivelu, R., Nguyen, N.-T.: Numerical simulation of the behavior of toroidal and spheroidal multicellular aggregates in microfluidic devices with microwell and U-shaped barrier. Micromachines 8(12), 358 (2017)

    Google Scholar 

  • Bartels, W.-B., et al.: Oil configuration under high-salinity and low-salinity conditions at pore scale: a parametric investigation by use of a single-channel micromodel. SPE J. 22(05), 1362–1373 (2017)

    Google Scholar 

  • Bartels, W.B., et al.: Low salinity flooding (LSF) in sandstones at pore scale: micro-model development and investigation. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, p. 17, Dubai (2016)

  • Basabe-Desmonts, L., et al.: A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass. J. Am. Chem. Soc. 126(23), 7293–7299 (2004)

    Google Scholar 

  • Berkowski, K.L., Plunkett, K.N., Yu, Q., Moore, J.S.: Introduction to photolithography: preparation of microscale polymer silhouettes. J. Chem. Educ. 82(9), 1365 (2005)

    Google Scholar 

  • Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat. Biotechnol. 32(8), 760–772 (2014)

    Google Scholar 

  • Biswas, R., Lewis, J.E., Maroncelli, M.: Electronic spectral shifts, reorganization energies, and local density augmentation of Coumarin 153 in supercritical solvents. Chem. Phys. Lett. 310, 485–494 (1999)

    Google Scholar 

  • Booth, R., Kim, H.: Characterization of a microfluidic in vitro model of the blood–brain barrier (μBBB). Lab Chip 12(10), 1784–1792 (2012)

    Google Scholar 

  • Bowden, S.A., Tanino, Y., Akamairo, B., Christensen, M.: Recreating mineralogical petrographic heterogeneity within microfluidic chips: assembly, examples, and applications. Lab Chip 16(24), 4677–4681 (2016)

    Google Scholar 

  • Brian, J.K., Ellis, M.: Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2016)

    Google Scholar 

  • Britt, L.K., Schoeffler, J.: The Geomechanics of a Shale Play: What Makes a Shale Prospective. Society of Petroleum Engineers, New York (2009)

    Google Scholar 

  • Buchgraber, M., Kovscek, A.R., Castanier, L.M.: A study of microscale gas trapping using etched silicon micromodels. Transp. Porous Media 95(3), 647–668 (2012)

    Google Scholar 

  • Cao, S.C., Dai, S., Jung, J.: Supercritical CO2 and brine displacement in geological carbon sequestration: micromodel and pore network simulation studies. Int. J. Greenhouse Gas Control 44(6), 104–114 (2016)

    Google Scholar 

  • Chang, C., et al.: Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Adv. Water Resour. 92(March), 142–158 (2016)

    Google Scholar 

  • Chang, C., Zhou, Q., Oostrom, M., Kneafsey, T.J., Mehta, H.: Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Adv. Water Resour. 100, 14–25 (2017)

    Google Scholar 

  • Chapman, E.M., Yang, J., Crawshaw, J.P., Boek, E.S.: Pore scale models for imbibition of CO2 analogue fluids in etched micro-model junctions using micro-fluidic experiments and direct flow calculations. Energy Proc. 37, 3680–3686 (2013)

    Google Scholar 

  • Chen, Y.: Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015)

    Google Scholar 

  • Chen, Y., Li, Y., Valocchi, A.J., Christensen, K.T.: Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions. J. Contam. Hydrol. 53, 6178–6196 (2017)

    Google Scholar 

  • Chrimes, A.F., Khoshmanesh, K., Stoddart, P.R., Mitchell, A., Kalantar-zadeh, K.: Microfluidics and Raman microscopy: current applications and future challenges. Chem. Soc. Rev. 42(13), 5880–5906 (2013)

    Google Scholar 

  • Christensen, K.: The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36(3), 484–497 (2004)

    Google Scholar 

  • Datta, S., Chiang, H., Ramakrishnan, T.S., Weitz, D.: Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. Phys. Rev. Lett. 111, 064501 (2013)

    Google Scholar 

  • Datta, S.S., Dupin, J.-B., Weitz, D.A.: Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium. Phys. Fluids 26(6), 062004 (2014)

    Google Scholar 

  • Davies, M.J., Marques, M.P.C., Radhakrishnan, A.N.P.: Chapter 2 Microfluidics Theory in Practice, Microfluidics in Detection Science: Lab-on-a-chip Technologies, pp. 29–60. The Royal Society of Chemistry, New York (2015)

    Google Scholar 

  • de Haas, T.W., Fadaei, H., Guerrero, U., Sinton, D.: Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. Lab Chip 13(19), 3832–3839 (2013)

    Google Scholar 

  • Deckert, V., et al.: Spatial resolution in Raman spectroscopy. Faraday Discuss. 177, 9–20 (2015)

    Google Scholar 

  • Delamarche, E., Tonna, N., Lovchik, R.D., Bianco, F., Matteoli, M.: Pharmacology on microfluidics: multimodal analysis for studying cell–cell interaction. Curr. Opin. Pharmacol. 13(5), 821–828 (2013)

    Google Scholar 

  • Dong, M., Liu, Q., Li, A.: Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel. Particuology 10(3), 298–305 (2012)

    Google Scholar 

  • Dong, Y., et al.: Microfluidics and circulating tumor cells. J. Mol. Diagn. 15(2), 149–157 (2013)

    Google Scholar 

  • Doughty, M.J.: pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited. Ophthalmic Physiol. Opt. 30(2), 167–174 (2010)

    Google Scholar 

  • Fakhari, A., Li, Y., Bolster, D., Christensen, K.T.: A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO2 sequestration at pore scale. Adv. Water Resour. 114, 119–134 (2018)

    Google Scholar 

  • Fan, X., et al.: A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens. Bioelectron. 71, 380–386 (2015)

    Google Scholar 

  • Franssila, S.: Introduction to Microfabrication. Wiley (2010)

  • Friend, J., Yeo, L.: Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2), 026502 (2010)

    Google Scholar 

  • Gerami, A., et al.: Microscale insights into gas recovery from bright and dull bands in coal. J. Petrol. Sci. Eng. 172, 373–382 (2018)

    Google Scholar 

  • Gerami, A., et al.: Coal-on-a-chip: visualizing flow in coal fractures. Energy Fuels 31(10), 10393–10403 (2017)

    Google Scholar 

  • Gerami, A., Mostaghimi, P., Armstrong, R.T., Zamani, A., Warkiani, M.E.: A microfluidic framework for studying relative permeability in coal. Int. J. Coal Geol. 159, 183–193 (2016)

    Google Scholar 

  • Giboz, J., Copponnex, T., Mélé, P.: Microinjection molding of thermoplastic polymers: a review. J. Micromech. Microeng. 17(6), R96 (2007)

    Google Scholar 

  • Godinez-Brizuela, O.E., Karadimitriou, N.K., Joekar-Niasar, V., Shore, C.A., Oostrom, M.: Role of corner interfacial area in uniqueness of capillary pressure-saturation- interfacial area relation under transient conditions. Adv. Water Resour. 107, 10–21 (2017)

    Google Scholar 

  • Gomez, F.A.: The future of microfluidic point-of-care diagnostic devices. Bioanalysis 5(1), 1–3 (2013)

    Google Scholar 

  • Gravesen, P., Branebjerg, J., Jensen, O.S.: Microfluidics—a review. J. Micromech. Microeng. 3(4), 168 (1993)

    Google Scholar 

  • Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., Young, E.W.K.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11), 2364–2378 (2015)

    Google Scholar 

  • Gunda, N.S., Bera, B., Karadimitriou, N.K., Mitra, S.K., Hassanizadeh, S.M.: Reservoir-on-a-chip (ROC): a new paradigm in reservoir engineering. Lab Chip 11(22), 3785–3792 (2011)

    Google Scholar 

  • Guo, H., et al.: Quantitative Raman spectroscopic investigation of geo-fluids high-pressure phase equilibria: part I. Accurate calibration and determination of CO2 solubility in water from 273.15 to 573.15 K and from 10 to 120 MPa. Fluid Phase Equilib. 382, 70–79 (2014)

    Google Scholar 

  • Guo, H., Huang, Y., Chen, Y., Zhou, Q.: Quantitative Raman spectroscopic measurements of CO2 solubility in NaCl solution from (273.15 to 473.15) K at p = (10.0, 20.0, 30.0, and 40.0) MPa. J. Chem. Eng. Data 61(1), 466–474 (2015)

    Google Scholar 

  • Haber, C.: Microfluidics in commercial applications; an industry perspective. Lab Chip 6(9), 1118–1121 (2006)

    Google Scholar 

  • Hae Choi, Y., et al.: Effect of functional groups on the solubilities of coumarin derivatives in supercritical carbon dioxide. Chromatographia 47(1–2), 93–97 (1998)

    Google Scholar 

  • Haeberle, S., Zengerle, R.: Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9), 1094–1110 (2007)

    Google Scholar 

  • Haszeldine, R.S.: Carbon capture and storage: how green can black be? Science (New York) 325(5948), 1647–1652 (2009)

    Google Scholar 

  • He, K., Xu, L., Gao, Y., Yin, X., Neeves, K.B.: Evaluation of surfactant performance in fracturing fluids for enhanced well productivity in unconventional reservoirs using rock-on-a-Chip approach. J. Petrol. Sci. Eng. 135, 531–541 (2015)

    Google Scholar 

  • He, K., Xu, L., Kenzhekhanov, S., Yin, X., Neeves, K.B.: A Rock-on-a-Chip Approach to Study Fluid Invasion and Flowback in Liquids-Rich Shale Formations. Society of Petroleum Engineers, London (2017)

    Google Scholar 

  • Hematpour, H., Mardi, M., Edalatkhah, S., Arabjamaloei, R.: Experimental study of polymer flooding in low-viscosity oil using one-quarter five-spot glass micromodel. Pet. Sci. Technol. 29(11), 1163–1175 (2011)

    Google Scholar 

  • Hilic, S., Boyer, S.V.A.E., AlAH, Pádua, Grolier, J.P.E.: Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling. J. Polym. Sci. Part B: Polym. Phys. 39(17), 2063–2070 (2001)

    Google Scholar 

  • Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19(1), 271–311 (1987)

    Google Scholar 

  • Hu, R., Wan, J., Kim, Y., Tokunaga, T.K.: Wettability effects on supercritical CO2–brine immiscible displacement during drainage: pore-scale observation and 3D simulation. Int. J. Greenhouse Gas Control 60, 129–139 (2017a)

    Google Scholar 

  • Hu, R., Wan, J., Kim, Y., Tokunaga, T.K.: Wettability Impact on Supercritical CO2 Capillary Trapping: Pore-Scale Visualization and Quantification. Water Resources Research, London (2017b)

    Google Scholar 

  • Huh, D., Hamilton, G.A., Ingber, D.E.: From 3D cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745–754 (2011)

    Google Scholar 

  • Huh, D., et al.: Microfabrication of human organs-on-chips. Nat. Protoc. 8(11), 2135–2157 (2013)

    Google Scholar 

  • Huh, D., et al.: Reconstituting organ-level lung functions on a chip. Science 328(5986), 1662–1668 (2010)

    Google Scholar 

  • Huppert, H.E., Neufeld, J.A.: The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46(1), 255–272 (2014)

    Google Scholar 

  • Iliescu, C., Taylor, H., Avram, M., Miao, J., Franssila, S.: A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6(1), 016505–016505-16 (2012)

    Google Scholar 

  • Jacob, R., Saylor, B.Z.: CO2 solubility in multi-component brines containing NaCl, KCl, CaCl 2 and MgCl 2 at 297 K and 1–14MPa. Chem. Geol. 424, 86–95 (2016)

    Google Scholar 

  • Jafari, M., Jung, J.: Direct measurement of static and dynamic contact angles using a random micromodel considering geological CO2 sequestration. Sustainability 9(12), 2352 (2017)

    Google Scholar 

  • Jahanshahi, A., Salvo, P., Vanfleteren, J.: PDMS selective bonding for the fabrication of biocompatible all polymer NC microvalves. J. Microelectromech. Syst. 22(6), 1354–1360 (2013)

    Google Scholar 

  • Jiang, C., Tsukruk, V.V.: Freestanding nanostructures via layer-by-layer assembly. Adv. Mater. 18(7), 829–840 (2006)

    Google Scholar 

  • Kalkandjiev, K., Gutzweiler, L., Welsche, M., Zengerle, R., Koltay, P.: A novel approach for the fabrication of all-polymer microfluidic devices. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1079–1082. IEEE (2010)

  • Kang, Y.-T., Doh, I., Byun, J., Chang, H.J., Cho, Y.-H.: Label-free rapid viable enrichment of circulating tumor cell by photosensitive polymer-based microfilter device. Theranostics 7(13), 3179 (2017)

    Google Scholar 

  • Karadimitriou, N.K., Hassanizadeh, S.M.: A review of micromodels and their use in two-phase flow studies. Vadose Zone J. 11(3), 85 (2012)

    Google Scholar 

  • Karadimitriou, N.K., Hassanizadeh, S.M., Joekar-Niasar, V., Kleingeld, P.J.: Micromodel study of two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res. 50(10), 8125–8140 (2014)

    Google Scholar 

  • Karadimitriou, N.K., Joekar-Niasar, V., Hassanizadeh, S.M., Kleingeld, P.J., Pyrak-Nolte, L.J.: A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab Chip 12(18), 3413–3418 (2012)

    Google Scholar 

  • Karadimitriou, N.K., et al.: On the fabrication of PDMS micromodels by rapid prototyping, and their use in two-phase flow studies. Water Resour. Res. 49(4), 2056–2067 (2013)

    Google Scholar 

  • Kashaninejad, N., et al.: Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines 7(8), 130 (2016)

    Google Scholar 

  • Kashaninejad, N., Shiddiky, M.J.A., Nguyen, N.-T.: Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip. Advanced Biosystems 2(1), 1700197 (2018)

    Google Scholar 

  • Kawata, S., Ichimura, T., Taguchi, A., Kumamoto, Y.: Nano-Raman scattering microscopy: resolution and enhancement. Chem. Rev. 117(7), 4983–5001 (2017)

    Google Scholar 

  • Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: A methodology for velocity field measurement in multiphase high-pressure flow of CO2 and water in micromodels. Water Resour. Res. 51(4), 3017–3029 (2015)

    Google Scholar 

  • Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: Quantifying the flow dynamics of supercritical CO2–water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV. Adv. Water Resour. 95, 352–368 (2016)

    Google Scholar 

  • Kazemifar, F., Kyritsis, D.C.: Experimental investigation of near-critical CO2 tube-flow and Joule-Thompson throttling for carbon capture and sequestration. Exp. Therm. Fluid Sci. 53, 161–170 (2014)

    Google Scholar 

  • Kim, D., et al.: Reaction-based two-photon probes for in vitro analysis and cellular imaging of monoamine oxidase activity. Chem. Commun. 48(54), 6833–6835 (2012a)

    Google Scholar 

  • Kim, H.J., Huh, D., Hamilton, G., Ingber, D.E.: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12), 2165–2174 (2012b)

    Google Scholar 

  • Kim, Y., Wan, J., Kneafsey, T.J., Tokunaga, T.K.: Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels. Environ. Sci. Technol. 46(7), 4228–4235 (2012c)

    Google Scholar 

  • Kim, H.N., Lee, M.H., Kim, H.J., Kim, J.S., Yoon, J.: A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 37(8), 1465–1472 (2008a)

    Google Scholar 

  • Kim, P., Kwon, K.W., Park, M.C., Lee, S.H., Kim, S.M., Suh, K.Y.: Soft lithography for microfluidics: a review. Biochip J. 2(1), 1–11 (2008b)

    Google Scholar 

  • Kim, H.N., et al.: Rhodamine hydrazone derivatives as Hg2 + selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst 136(7), 1339–1343 (2011)

    Google Scholar 

  • Kim, Y.J., Kang, Y.-T., Cho, Y.-H.: Poly(ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells. Anal. Chem. 88(16), 7938–7945 (2016)

    Google Scholar 

  • Kim, M., Abedini, A., Lele, P., Guerrero, A., Sinton, D.: Microfluidic pore-scale comparison of alcohol- and alkaline-based SAGD processes. J. Petrol. Sci. Eng. 154, 139–149 (2017)

    Google Scholar 

  • King, M.B.B., Mubarak, A., Kim, J.D.D., Bott, T.R.R.: The mutual solubilities of water with supercritical and liquid carbon dioxides. J. Supercrit. Fluids 5(4), 296–302 (1992)

    Google Scholar 

  • Kjeang, E., Djilali, N., Sinton, D.: Microfluidic fuel cells: a review. J. Power Sour. 186(2), 353–369 (2009)

    Google Scholar 

  • Laerme, F., Schilp, A., Funk, K., Offenberg, M.: Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications. In: 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999. MEMS’99, pp. 211–216. IEEE (1999)

  • Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (2014)

    Google Scholar 

  • Le-The, H., et al.: Large-scale fabrication of free-standing and sub-[small mu]m PDMS through-hole membranes. Nanoscale 10(16), 7711–7718 (2018)

    Google Scholar 

  • Lee, J.S., et al.: Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J. Matern. Fetal Neonatal Med. 29(7), 1046–1054 (2016)

    Google Scholar 

  • Lee Seung, G., Lee, H., Gupta, A., Chang, S., Doyle Patrick, S.: Site-selective in situ grown calcium carbonate micromodels with tunable geometry, porosity, and wettability. Adv. Func. Mater. 26(27), 4896–4905 (2016)

    Google Scholar 

  • Lei, K.F.: Chapter 1 Materials and Fabrication Techniques for Nano- and Microfluidic Devices, Microfluidics in Detection Science: Lab-on-a-chip Technologies, pp. 1–28. The Royal Society of Chemistry, New York (2015)

    Google Scholar 

  • Leis, A.P., Schlicher, S., Franke, H., Strathmann, M.: Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics. Appl. Environ. Microbiol. 71(8), 4801–4808 (2005)

    Google Scholar 

  • Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

    Google Scholar 

  • Li, X., Wu, N., Rojanasakul, Y., Liu, Y.: Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. Sens. Actuators A 193, 186–192 (2013)

    Google Scholar 

  • Li, Y., Kazemifar, F., Blois, G., Christensen, K.T.: Micro-PIV measurements of multiphase flow of water and liquid CO2 in 2-D heterogeneous porous micromodels. Water Resour. Res. 53(7), 6178–6196 (2017)

    Google Scholar 

  • Lim, L.S., et al.: Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21), 4388–4396 (2012)

    Google Scholar 

  • Liu, N., Aymonier, C., Lecoutre, C., Garrabos, Y., Marre, S.: Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy. Chem. Phys. Lett. 551, 139–143 (2012)

    Google Scholar 

  • Liu, M., Shabaninejad, M., Mostaghimi, P.: Impact of mineralogical heterogeneity on reactive transport modelling. Comput. Geosci. 104(Supplement C), 12–19 (2017)

    Google Scholar 

  • Lu, C., Lee, L.J., Juang, Y.J.: Packaging of microfluidic chips via interstitial bonding technique. Electrophoresis 29(7), 1407–1414 (2008)

    Google Scholar 

  • Lu, W., Guo, H., Chou, I.M., Burruss, R.C., Li, L.: Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements. Geochim. Cosmochim. Acta 115, 183–204 (2013)

    Google Scholar 

  • Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization. CRC Press, Boca Raton (2002)

    Google Scholar 

  • Mahoney, S.A., Rufford, T.E., Dmyterko, A.S.K., Rudolph, V., Steel, K.M.: The effect of rank and lithotype on coal wettability and its application to coal relative permeability models. In: SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane

  • Mahoney, S.A., et al.: The effect of rank, lithotype and roughness on contact angle measurements in coal cleats. Int. J. Coal Geol. 179, 302–315 (2017)

    Google Scholar 

  • Martin, M.M., Lindqvist, L.: The pH dependence of fluorescein fluorescence. J. Lumin. 10(6), 381–390 (1975)

    Google Scholar 

  • Martínez-Máñez, R., Sancenón, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103(11), 4419–4476 (2003)

    Google Scholar 

  • Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2009)

    Google Scholar 

  • McDonald, J.C., et al.: Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1), 27–40 (2000)

    Google Scholar 

  • Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exp. Fluids 27(5), 414–419 (1999)

    Google Scholar 

  • Mela, P., et al.: Monolayer-functionalized microfluidics devices for optical sensing of acidity. Lab Chip 5(2), 163–170 (2005)

    Google Scholar 

  • Moebius, F., Or, D.: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J. Colloid Interface Sci. 377(1), 406–415 (2012)

    Google Scholar 

  • Moebius, F., Or, D.: Pore scale dynamics underlying the motion of drainage fronts in porous media. Water Resour. Res. 50(11), 8441–8457 (2014)

    Google Scholar 

  • Moghadas, H., Saidi, M.S., Kashaninejad, N., Kiyoumarsioskouei, A., Nguyen, N.-T.: Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture. Biomed. Microdevice 19(4), 74 (2017a)

    Google Scholar 

  • Moghadas, H., Saidi, M.S., Kashaninejad, N., Nguyen, N.-T.: Challenge in particle delivery to cells in a microfluidic device. Drug Deliv. Transl. Res. (2017b). https://doi.org/10.1007/s13346-017-0467-3

    Article  Google Scholar 

  • Moghadas, H., Saidi, M.S., Kashaninejad, N., Nguyen, N.-T.: A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab on a chip. Biomicrofluidics 12(2), 024117 (2018)

    Google Scholar 

  • Mohammadzadeh, O., Chatzis, I.: Analysis of the heat losses associated with the SAGD visualization experiments. J. Petrol. Explor. Prod. Technol. 6(3), 387–400 (2016)

    Google Scholar 

  • Mohammadzadeh, O., Rezaei, N., Chatzis, I.: Pore-level investigation of heavy oil and Bitumen recovery using solvent—aided steam assisted gravity drainage (SA-SAGD) process. Energy Fuels 24(12), 6327–6345 (2010)

    Google Scholar 

  • Moraes, C., Mehta, G., Lesher-Perez, S.C., Takayama, S.: Organs-on-a-chip: a focus on compartmentalized microdevices. Ann. Biomed. Eng. 40(6), 1211–1227 (2012)

    Google Scholar 

  • Morais, S., Diouf, A., Lecoutre, C., Bernard, D., Garrabos, Y., Marre, S.: Geological labs on chip-new tools for investigating key aspects of CO2 geological storage. In: The Third Sustainable Earth Sciences Conference and Exhibition (2015)

  • Morais, S., et al.: Monitoring CO2 invasion processes at the pore scale using geological labs on chip. Lab Chip 16(18), 3493–3502 (2016)

    Google Scholar 

  • Morin, B., Liu, Y., Alvarado, V., Oakey, J.: A microfluidic flow focusing platform to screen the evolution of crude oil-brine interfacial elasticity. Lab Chip 16(16), 3074–3081 (2016)

    Google Scholar 

  • Moshksayan, K., et al.: Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens. Actuators B Chem. 263, 151–176 (2018)

    Google Scholar 

  • Myers, D.R., et al.: Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J. Vis. Exp. (JoVE) 64, 3958 (2012)

    Google Scholar 

  • Nan, Z., et al.: Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices. J. Micromech. Microeng. 25(9), 095005 (2015)

    Google Scholar 

  • Nguyen, C., Kothamasu, R., He, K., Xu, L.: Low-Salinity Brine Enhances Oil Production in Liquids-Rich Shale Formations. Society of Petroleum Engineers, London (2015)

    Google Scholar 

  • Nguyen, N.-T., Hejazian, M., Ooi, C.H., Kashaninejad, N.: Recent advances and future perspectives on microfluidic liquid handling. Micromachines 8, 186 (2017)

    Google Scholar 

  • Nguyen, N.-T., Shaegh, S.A.M., Kashaninejad, N., Phan, D.-T.: Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 65(11–12), 1403–1419 (2013)

    Google Scholar 

  • Nieskens, T.T., Wilmer, M.J.: Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur. J. Pharmacol. 790, 46–56 (2016)

    Google Scholar 

  • Nolan, E.M., Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108(9), 3443–3480 (2008)

    Google Scholar 

  • Nordbotten, J.M., Celia, M.A., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005)

    Google Scholar 

  • Oh, Y.S., Jo, H.Y., Ryu, J.-H., Kim, G.-Y.: A microfluidic approach to water–rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections. J. Hazard. Mater. B 324, 373–381 (2017)

    Google Scholar 

  • Ohno, K.I., Tachikawa, K., Manz, A.: Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22), 4443–4453 (2008)

    Google Scholar 

  • Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 29(7), S166–S174 (2000)

    Google Scholar 

  • Pacala, S., Socolow, R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686), 968–972 (2004)

    Google Scholar 

  • Paguirigan, A.L., Beebe, D.J.: Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30(9), 811–821 (2008)

    Google Scholar 

  • Pei, H., Zhang, G., Ge, J., Jin, L., Ma, C.: Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification. Fuel 104, 284–293 (2013)

    Google Scholar 

  • Pensabene, V., et al.: Ultrathin polymer membranes with patterned, micrometric pores for organs-on-chips. ACS Appl. Mater. Interfaces 8(34), 22629–22636 (2016)

    Google Scholar 

  • Porter, M.L., et al.: Fundamental Investigation of Gas Injection in Microfluidic Shale Fracture Networks at Geologic Conditions. American Rock Mechanics Association, New York (2015a)

    Google Scholar 

  • Porter, M.L., et al.: Geo-material microfluidics at reservoir conditions for subsurface energy resource applications. Lab Chip 15, 4044–4053 (2015b)

    Google Scholar 

  • Prodanov, L., et al.: Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol. Bioeng. 113(1), 241–246 (2016)

    Google Scholar 

  • Qin, N., Wen, J.Z., Ren, C.L.: Highly pressurized partially miscible liquid–liquid flow in a micro-T-junction. I. Exp. Obser. Phys. Rev. E 95(4), 043110 (2017)

    Google Scholar 

  • Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Berlin (2013)

    Google Scholar 

  • Rangel-German, E., Kovscek, A.: A micromodel investigation of two-phase matrix-fracture transfer mechanisms. Water Resour. Res. 42(3), 1 (2006)

    Google Scholar 

  • Rindfleisch, F., DiNoia, T.P., McHugh, M.A.: Solubility of polymers and copolymers in supercritical CO2. J. Phys. Chem. 100(38), 15581–15587 (1996)

    Google Scholar 

  • Rodríguez, S.J., Bishop, P.L.: Three-dimensional quantification of soil biofilms using image analysis. Environ. Eng. Sci. 24(1), 96–103 (2007)

    Google Scholar 

  • Sackmann, E.K., Fulton, A.L., Beebe, D.J.: The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)

    Google Scholar 

  • Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998)

    Google Scholar 

  • Sato, Y., et al.: Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib. 162(1–2), 261–276 (1999)

    Google Scholar 

  • Schmidt, M.A.: Wafer-to-wafer bonding for microstructure formation. Proc. IEEE 86(8), 1575–1585 (1998)

    Google Scholar 

  • Schwartz, G., Schaible, P.: Reactive ion etching of silicon. J. Vac. Sci. Technol. 16(2), 410–413 (1979)

    Google Scholar 

  • Seah, Y.F.S., Hu, H., Merten, C.A.: Microfluidic single-cell technology in immunology and antibody screening. Mol. Aspects Med. 59, 47–61 (2017)

    Google Scholar 

  • Seah, Y.F.S., Hu, H., Merten, C.A.: Microfluidic single-cell technology in immunology and antibody screening. Mol. Aspects Med. 59, 47–61 (2018)

    Google Scholar 

  • Sedaghat, M., Mohammadzadeh, O., Kord, S., Chatzis, I.: Heavy oil recovery using ASP flooding: a pore-level experimental study in fractured five-spot micromodels. Can. J. Chem. Eng. 94(4), 779–791 (2016)

    Google Scholar 

  • Sell, A., Fadaei, H., Kim, M., Sinton, D.: Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis. Environ. Sci. Technol. 47(1), 71–78 (2013)

    Google Scholar 

  • Shirota, H., Castner Jr., E.W.: Solvation in highly nonideal solutions: a study of aqueous 1-propanol using the coumarin 153 probe. J. Chem. Phys. 112(5), 2367 (2000)

    Google Scholar 

  • Shiu, P.P., Knopf, G.K., Ostojic, M., Nikumb, S.: Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing. J. Micromech. Microeng. 18(2), 025012 (2008)

    Google Scholar 

  • Sieben, V., Kharrat, A.M., Mostowfi, F.: Novel measurement of asphaltene content in oil using microfluidic technology. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, New Orleans (2013)

  • Silverio, V., de Freitas, S.C.: Microfabrication Techniques for Microfluidic Devices, Complex Fluid-Flows in Microfluidics, pp. 25–51. Springer, Berlin (2018)

    Google Scholar 

  • Singh, R., et al.: Real rock-microfluidic flow cell: a test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment. J. Contam. Hydrol. 204, 28–39 (2017)

    Google Scholar 

  • Singh, R., et al.: Metabolism-induced CaCO3 biomineralization during reactive transport in a micromodel: implications for porosity alteration. Environ. Sci. Technol. 49(20), 12094–12104 (2015)

    Google Scholar 

  • Sinton, D.: Energy: the microfluidic frontier. Lab Chip 14(17), 3127–3134 (2014)

    Google Scholar 

  • Song, W., de Haas, T.W., Fadaei, H., Sinton, D.: Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels. Lab Chip 14(22), 4382–4390 (2014)

    Google Scholar 

  • Song, W., Kovscek, A.R.: Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes. Lab Chip 15(16), 3314–3325 (2015)

    Google Scholar 

  • Song, W., Kovscek, A.R.: Direct visualization of pore-scale fines migration and formation damage during low-salinity waterflooding. J. Nat. Gas Sci. Eng. 34, 1276–1283 (2016)

    Google Scholar 

  • Stephan, K., et al.: Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J. Micromech. Microeng. 17(10), N69 (2007)

    Google Scholar 

  • Stevenson, J.T.M., Gundlach, A.M.: The application of photolithography to the fabrication of microcircuits. J. Phys. E: Sci. Instrum. 19(9), 654 (1986)

    Google Scholar 

  • Syed, A.H., et al.: A combined method for pore-scale optical and thermal characterization of SAGD. J. Petrol. Sci. Eng. 146, 866–873 (2016)

    Google Scholar 

  • Tan, S.H., Nguyen, N.-T., Chua, Y.C., Kang, T.G.: Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3), 032204 (2010)

    Google Scholar 

  • Tanino, Y., Zacarias-Hernandez, X., Christensen, M.: Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement. Exp. Fluids 59(2), 35 (2018)

    Google Scholar 

  • Trietsch, S.J., Hankemeier, T., van der Linden, H.J.: Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review. Chemometr. Intell. Lab. Syst. 108(1), 64–75 (2011)

    Google Scholar 

  • Tropea, C., Yarin, A.L., Foss, J.F.: Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin (2007)

    Google Scholar 

  • Tsao, C.-W., DeVoe, D.L.: Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6(1), 1–16 (2009)

    Google Scholar 

  • Unsal, E., Broens, M., Armstrong, R.T.: Pore scale dynamics of microemulsion formation. Langmuir 32(28), 7096–7108 (2016)

    Google Scholar 

  • van der Helm, M.W., van der Meer, A.D., Eijkel, J.C., van den Berg, A., Segerink, L.I.: Microfluidic organ-on-chip technology for blood–brain barrier research. Tissue Barriers 4(1), e1142493 (2016)

    Google Scholar 

  • Verpoorte, E., De Rooij, N.F.: Microfluidics meets MEMS. Proc. IEEE 91(6), 930–953 (2003)

    Google Scholar 

  • Vladisavljević, G.T., Kobayashi, I., Nakajima, M.: Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid. Nanofluid. 13(1), 151–178 (2012)

    Google Scholar 

  • Volpatti, L.R., Yetisen, A.K.: Commercialization of microfluidic devices. Trends Biotechnol. 32(7), 347–350 (2014)

    Google Scholar 

  • Wang, W., Chang, S., Gizzatov, A.: Toward reservoir-on-a-chip: fabricating reservoir micromodels by in situ growing calcium carbonate nanocrystals in microfluidic channels. ACS Appl. Mater. Interfaces 9(34), 29380–29386 (2017)

    Google Scholar 

  • Wang, X., Ding, B., Li, B.: Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today 16(6), 229–241 (2013a)

    Google Scholar 

  • Wang, Y., et al.: Application of microfluidic technology for studying islet physiology and pathophysiology. Micro Nanosyst. 5(3), 216–223 (2013b)

    Google Scholar 

  • Wang, Y., et al.: Experimental study of crossover from capillary to viscous fingering for supercritical CO2–water displacement in a homogeneous pore network. Environ. Sci. Technol. 47(1), 212–218 (2013c)

    Google Scholar 

  • Warkiani, M.E., et al.: Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter. J. Membr. Sci. 369(1), 560–568 (2011)

    Google Scholar 

  • Warkiani, M.E., et al.: Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1), 128–137 (2014a)

    Google Scholar 

  • Warkiani, M.E., et al.: An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139(13), 3245–3255 (2014b)

    Google Scholar 

  • Webb, K.F., Teja, A.S.: Solubility and diffusion of carbon dioxide in polymers. Fluid Phase Equilib. 158–160(1), 1029–1034 (1999)

    Google Scholar 

  • Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8(12), 1379 (1997)

    Google Scholar 

  • White, C.M., et al.: Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds. J. Air Waste Manag. Assoc. 53(6), 645–715 (2003)

    Google Scholar 

  • Whitesides, G.: The origins and the future of microfluidics. Nature 442, 368–373 (2006a)

    Google Scholar 

  • Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006b)

    Google Scholar 

  • Wiebe, R., Gaddy, V.L.: The solubility of carbon dioxide in water at various temperatures from 12° to 40° and at pressures to 500 atmospheres. Critical phenomena. J. Am. Chem. Soc. 62(4), 815–817 (1940)

    Google Scholar 

  • Wong, I., Ho, C.-M.: Surface molecular property modifications for poly(dimethylsiloxane)(PDMS) based microfluidic devices. Microfluid. Nanofluid. 7(3), 291–306 (2009)

    Google Scholar 

  • Wu, B., Kumar, A., Pamarthy, S.: High aspect ratio silicon etch: a review. J. Appl. Phys. 108(5), 9 (2010)

    Google Scholar 

  • Xu, B., et al.: High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci. Rep. 6, 19989 (2016)

    Google Scholar 

  • Xu, R., Li, R., Huang, F., Jiang, P.: Pore-scale visualization on a depressurization-induced CO2 exsolution. Sci. Bull. 62, 795–803 (2017)

    Google Scholar 

  • Xu, W., Ok, J.T., Xiao, F., Neeves, K.B., Yin, X.: Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Phys. Fluids 26(9), 093102 (2014)

    Google Scholar 

  • Yadali Jamaloei, B., Kharrat, R.: Analysis of microscopic displacement mechanisms of dilute surfactant flooding in oil-wet and water-wet porous media. Transp. Porous Media 81(1), 1 (2009)

    Google Scholar 

  • Yang, S.Y., et al.: Single-file diffusion of protein drugs through cylindrical nanochannels. ACS Nano 4(7), 3817–3822 (2010)

    Google Scholar 

  • Yang, Y.-K., Yook, K.-J., Tae, J.: A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2 + ions in aqueous media. J. Am. Chem. Soc. 127(48), 16760–16761 (2005)

    Google Scholar 

  • Yaozhong, Z., Jea-Hyeoung, H., Likun, Z., Mark, A.S., Junghoon, Y.: Soft lithographic printing and transfer of photosensitive polymers: facile fabrication of free-standing structures and patterning fragile and unconventional substrates. J. Micromech. Microeng. 24(11), 115019 (2014)

    Google Scholar 

  • Yoon, H., Valocchi, A.J., Werth, C.J., Dewers, T.: Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network. Water Resour. Res. 48(2), W02524 (2012)

    Google Scholar 

  • Yoon, J.-Y., Kim, B.: Lab-on-a-chip pathogen sensors for food safety. Sensors 12(8), 10713–10741 (2012)

    Google Scholar 

  • Zarikos, I.M., Hassanizadeh, S.M., van Oosterhout, L.M., van Oordt, W.: Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors. Transport in Porous Media, New York (2018)

    Google Scholar 

  • Zevi, Y., Dathe, A., McCarthy, J.F., Richards, B.K., Steenhuis, T.S.: Distribution of colloid particles onto interfaces in partially saturated sand. Environ. Sci. Technol. 39(18), 7055–7064 (2005)

    Google Scholar 

  • Zhang, C., Oostrom, M., Grate, J.W., Wietsma, T.W., Warner, M.G.: Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environ. Sci. Technol. 45(17), 7581–7588 (2011)

    Google Scholar 

  • Zhang, J., Chen, K., Fan, Z.H.: Chapter one-circulating tumor cell isolation and analysis. In: Makowski, G.S. (ed.) Advances in Clinical Chemistry, pp. 1–31. Elsevier, Amsterdam (2016)

    Google Scholar 

  • Zhang, Q., Karadimitriou, N.K., Hassanizadeh, S.M., Kleingeld, P.J., Imhof, A.: Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. J. Colloid Interface Sci. 401, 141–147 (2013)

    Google Scholar 

  • Zhang, W., et al.: Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cell. Physiol. Biochem. 41(2), 755–768 (2017)

    Google Scholar 

  • Zhang, Y., Sanati-Nezhad, A., Hejazi, S.: Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications. Lab Chip 18(2), 285–295 (2018)

    Google Scholar 

  • Zhao, B., MacMinn, C.W., Juanes, R.: Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. 113(37), 10251–10256 (2016)

    Google Scholar 

  • Zheng, X., Mahabadi, N., Yun, T.S., Jang, J.: Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip. J. Geophys. Res. Solid Earth 122(3), 1634–1647 (2017)

    Google Scholar 

  • Zuo, L., Zhang, C., Falta, R.W., Benson, S.M.: Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Resour. 53(6), 188–197 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Gerami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerami, A., Alzahid, Y., Mostaghimi, P. et al. Microfluidics for Porous Systems: Fabrication, Microscopy and Applications. Transp Porous Med 130, 277–304 (2019). https://doi.org/10.1007/s11242-018-1202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1202-3

Keywords

Navigation