Skip to main content
Log in

Modeling and Simulation of Local Thermal Non-equilibrium Effects in Porous Media with Small Thermal Conductivity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The two-equation model in porous media can describe the local thermal non-equilibrium (LTNE) effects between fluid and solid at REV scale, with the temperature differences in a solid particle neglected. A multi-scale model has been proposed in this study. In the model, the temperature differences in a solid particle are considered by the coupling of the fluid energy equation at REV scale with the heat conduction equation of a solid particle at pore scale. The experiments were conducted to verify the model and numerical strategy. The multi-scale model is more suitable than the two-equation model to predict the LTNE effects in porous media with small thermal conductivity. The effects of particle diameter, mass flow rate, and solid material on the LTNE effects have been investigated numerically when cryogenic nitrogen flows through the porous bed with small thermal conductivity. The results indicate that the temperature difference between solid center and fluid has the same trend at different particle diameters and mass flow rates, while the time to reach the local thermal equilibrium is affected by solid diameter dramatically. The results also show that the temperature difference between solid center and surface is much greater than that between solid surface and fluid. The values of \( \rho {\text{c}} \) for different materials have important influence on the time to reach the local thermal equilibrium between solid and fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( \varepsilon \) :

Porosity (Saad and Saad 2013)

\( \rho \) :

Density (kg/m3)

\( c_{\text{pf}} \) :

Specific heat capacity of fluid (J/kg K)

\( c_{\text{s}} \) :

Specific heat capacity of solid (J/kg K)

\( \vec{u} \) :

Velocity of fluid (m/s)

\( t \) :

Time (s)

\( h \) :

Specific enthalpy (J/kg)

\( \dot{m} \) :

Mass flow rate of fluid (kg/m2 s)

\( Q \) :

Heat exchanged per unit volume (J/m3 s)

\( T \) :

Temperature (K)

\( p \) :

Pressure (Pa)

\( V_{0} \) :

Volume of a sphere (m3)

\( \mu \) :

Dynamic viscosity (kg/ms)

\( K \) :

Permeability (Saad and Saad 2013)

\( k \) :

Heat conductivity (W/mK)

\( Re \) :

Reynolds number (Saad and Saad 2013)

\( L \) :

Length of porous region (m)

\( d_{\text{p}} \) :

Diameter of a sphere (m)

\( R \) :

Radius of a sphere (m)

\( \alpha \) :

Aspect ratio (Saad and Saad 2013)

\( q \) :

Heat flux (J/m2 s]

\( h_{\text{c}} \) :

Convective heat transfer coefficient (W/m2 K)

S :

Solid

f :

Fluid

0:

Initial time

in:

Inlet

out:

Outlet

wall:

Sphere surface

eff:

Effective

*:

Previous iteration

References

  • Achenbach, E.: Heat and flow characteristics of packed beds. Exp. Thermal Fluid Sci. 10(1), 17–27 (1995)

    Article  Google Scholar 

  • Benyahia, F., O’Neill, K.E.: Enhanced voidage correlations for packed beds of various particle shapes and sizes. Part. Sci. Technol. 23(2), 169–177 (2005)

    Article  Google Scholar 

  • Carbajal, G., Sobhan, C.B., Peterson, G.P.: Dimensionless governing equations for vapor and liquid flow analysis of heat pipes. J. Thermophys. Heat Transf. 20(1), 140–144 (2006)

    Article  Google Scholar 

  • Celli, M., Barletta, A., Rees, D.A.S.: Local thermal non-equilibrium analysis of the instability in a vertical porous slab with permeable sidewalls. Transp. Porous Media 119(3), 539–553 (2017)

    Article  Google Scholar 

  • Chakravarty, A., et al.: Thermal non-equilibrium heat transfer and entropy generation due to natural convection in a cylindrical enclosure with a truncated conical, heat-generating porous bed. Transp. Porous Media 116(1), 353–377 (2017)

    Article  Google Scholar 

  • Chen, J., Jiang, F.: Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy. Renew. Energy 74, 37–48 (2015)

    Article  Google Scholar 

  • Choi, S.W., Lee, W.I., Kim, H.S.: Analysis of flow characteristics of cryogenic liquid in porous media. Int. J. Heat Mass Transf. 87, 161–183 (2015)

    Article  Google Scholar 

  • Cortés, C., Campo, A., Arauzo, I.: Reflections on lumped models of unsteady heat conduction in simple bodies. Int. J. Therm. Sci. 42(10), 921–930 (2003)

    Article  Google Scholar 

  • Davit, Y., Quintard, M.: Technical notes on volume averaging in porous media I: how to choose a spatial averaging operator for periodic and quasiperiodic structures. Transp. Porous Media 119(3), 555–584 (2017)

    Article  Google Scholar 

  • He, F., Wang, J.: Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energy Convers. Manag. 80, 591–597 (2014)

    Article  Google Scholar 

  • Heinze, T., Hamidi, S.: Heat transfer and parameterization in local thermal non-equilibrium for dual porosity continua. Appl. Therm. Eng. 114, 645–652 (2017)

    Article  Google Scholar 

  • Huang, W.B., et al.: An analytical method to determine the fluid-rock heat transfer rate in two-equation thermal model for EGS heat reservoir. Int. J. Heat Mass Transf. 113, 1281–1290 (2017)

    Article  Google Scholar 

  • Jiang, P.X., Ren, Z.P.: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 22(1), 102–110 (2001)

    Article  Google Scholar 

  • Keshavarz, P., Taheri, M.: An improved lumped analysis for transient heat conduction by using the polynomial approximation method. Heat Mass Transf. 43(11), 1151–1156 (2007)

    Article  Google Scholar 

  • Kim, S.J., Jang, S.P.: Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium. Int. J. Heat Mass Transf. 45(19), 3885–3896 (2002)

    Article  Google Scholar 

  • Kundu, P., Kumar, V., Mishra, I.M.: Experimental and numerical investigation of fluid flow hydrodynamics in porous media: characterization of pre-Darcy, Darcy and non-Darcy flow regimes. Powder Technol. 303, 278–291 (2016)

    Article  Google Scholar 

  • Lang, L., Chengyun, X., Xinyu, L.: Heat and mass transfer of liquid nitrogen in coal porous media. Heat Mass Transf. 54(4), 1101–1111 (2018)

    Article  Google Scholar 

  • Levendis, Y.A., Delichatsios, M.A.: Pool fire extinction by remotely controlled application of liquid nitrogen. Process Saf. Prog. 30(2), 164–167 (2011)

    Article  Google Scholar 

  • Li, C., et al.: Mixed volume element-characteristic fractional step difference method for contamination from nuclear waste disposal. J. Sci. Comput. 72(2), 467–499 (2017)

    Article  Google Scholar 

  • Lindner, F., Mundt, C., Pfitzner, M.: Fluid flow and heat transfer with phase change and local thermal non-equilibrium in vertical porous channels. Transp. Porous Media 106(1), 201–220 (2015)

    Article  Google Scholar 

  • Mahdi, J.M., Nsofor, E.C.: Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Energy 126, 501–512 (2017)

    Article  Google Scholar 

  • Mohalik, N.K., et al.: Application of nitrogen as preventive and controlling subsurface fire—Indian context. J. Sci. Ind. Res. 64(4), 273–280 (2005)

    Google Scholar 

  • Nield, D.A., et al.: The effects of double diffusion and local thermal non-equilibrium on the onset of convection in a layered porous medium: non-oscillatory instability. Transp. Porous Media 107(1), 261–279 (2015)

    Article  Google Scholar 

  • Niessner, J., Hassanizadeh, S.M.: Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media—theoretical considerations and modeling. Adv. Water Resour. 32(12), 1756–1766 (2009)

    Article  Google Scholar 

  • Ouarzazi, M.N., et al.: Finite amplitude convection and heat transfer in inclined porous layer using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 113, 399–410 (2017)

    Article  Google Scholar 

  • Qi, X., et al.: Status and prospect of the mechanism and prevention of coalfield fire. Disaster Adv. 6, 282–289 (2013)

    Google Scholar 

  • Quintard, M.: Modelling local non-equilibrium heat transfer in porous media. Heat Transf. 1, 279–285 (1998)

    Google Scholar 

  • Saad, B., Saad, M.: Study of full implicit petroleum engineering finite-volume scheme for compressible two-phase flow in porous media. SIAM J. Numer. Anal. 51(1), 716–741 (2013)

    Article  Google Scholar 

  • Shi, B., Zhou, F.: Impact of heat and mass transfer during the transport of nitrogen in coal porous media on coal mine fires. Sci. World J. (2014). https://doi.org/10.1155/2014/293142

    Google Scholar 

  • Shi, J.X., Wang, J.H.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87(3), 703–716 (2011)

    Article  Google Scholar 

  • Shi, B.B., et al.: Engineering case reports application of a novel liquid nitrogen control technique for heat stress and fire prevention in underground mines. J. Occup. Environ. Hyg. 12(8), D168–D177 (2015)

    Article  Google Scholar 

  • Wang, J.H., Wang, H.N.: A discussion of transpiration cooling problems through an analytical solution of local thermal nonequilibrium model. J. Heat Transf. Trans 128(10), 1093–1098 (2006)

    Article  Google Scholar 

  • Xin, C., et al.: Numerical investigation of vapor–liquid heat and mass transfer in porous media. Energy Convers. Manag. 78, 1–7 (2014)

    Article  Google Scholar 

  • Zhai, M., et al.: Solid-solid phase transition of tris(hydroxymethyl)aminomethane in nanopores of silica gel and porous glass for thermal energy storage. J. Therm. Anal. Calorim. 129(2), 957–964 (2017)

    Article  Google Scholar 

  • Zhou, F.-B., et al.: A new approach to control a serious mine fire with using liquid nitrogen as extinguishing media. Fire Technol. 51(2), 325–334 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (No: 2015XKMS060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyun Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Du, X. & Xin, C. Modeling and Simulation of Local Thermal Non-equilibrium Effects in Porous Media with Small Thermal Conductivity. Transp Porous Med 124, 553–575 (2018). https://doi.org/10.1007/s11242-018-1084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1084-4

Keywords

Navigation