Skip to main content
Log in

Numerical Investigation of Drug Delivery to Cancerous Solid Tumors by Magnetic Nanoparticles Using External Magnet

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Chemotherapy as one of the most utilized cancerous tumor treatment methods introduces undesired side effects due to penetrating toxic drugs into the healthy organs. Delivery of anticancer therapeutic agents to solid tumors is also problematic. The purpose of current study is to investigate the penetration of magnetic drug carriers (MDCs) within the cancerous solid tumor tissue under the influence of external magnet. Capillary wall and tumor tissue is modeled as a saturated porous media. In order to solve the coupled governing equations, mass, momentum and concentration, an in-house finite volume-based code is developed and utilized. Results show the penetration of MDCs into the tumor in the absence of magnetic field is minimal and is limited to the surface of the tumor. On the other hand, under the influence of external magnet the penetration of MDCs within the tumor increases exponentially. They also penetrate deep into the tumor and cover the entire tumor which increase the effectivity and decrease the side effect of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic flux density of external magnet at its surface

\(C_{0}\) :

MDCs concentration at inlet

C :

MDCs dimensionless concentration

D :

MDCs diffusion coefficient

\(D_{\infty }\) :

diffusion coefficient of particle in unbounded fluid

\(D_{\mathrm{blood}}\) :

MDCs diffusion coefficient in the blood

\(D_{\mathrm{B}}\) :

Brownian diffusion coefficient of MDCs

\(D_{\mathrm{S}}\) :

Scattering diffusion coefficient of MDCs

\(D_{\mathrm{Endo}}\) :

MDCs diffusion coefficient in the Endothelium layer

\(D_{\mathrm{Tissue}}\) :

MDCs diffusion coefficient in the Tumor tissue

E :

Uptake term

\(\mathbf{F}_{1}\) :

Magnetic force acting upon a single MDC

\(F_{\mathrm{x}}\) :

Horizontal magnetic body force

\(F_{\mathrm{y}}\) :

Vertical magnetic body force

G :

Generation term

H :

Magnetic field intensity

J :

Hydrodynamic coefficient

P :

Pressure

\(\textit{Re}\) :

Reynolds number

\(r_{\mathrm{mag}}\) :

External magnet radius

S :

Steric coefficient

\(U_{\mathrm{in}}\) :

Inlet blood velocity

u :

Horizontal blood velocity

v :

Vertical blood velocity

\(\vec {\mathbf{v}}\) :

Blood velocity vector

\(\vec {\mathbf{v}}_{\mathrm{MDC}}\) :

MDCs velocity vector

\(\vec {\mathbf{v}}_{\mathrm{relative}}\) :

Relative velocity of MDCs to blood

\(x_{\mathrm{mag}}\) :

Horizontal position of external magnet

\(y_{\mathrm{mag}}\) :

Vertical position of external magnet

z :

Distance between external magnet and tumor

\(\rho \) :

Blood density

\(\varepsilon \) :

Porosity

\(\mu \) :

Blood viscosity

\(\mu _{\mathrm{plasma}}\) :

Plasma viscosity

\(\mu _{0}\) :

Magnetic permeability of vacuum

\(\lambda _{\mathrm{g}}\) :

Geometrical tortuosity

\(\chi \) :

Magnetic susceptibility of the MNPs

\(\tau _{\mathrm{p}}\) :

Particle response time

\(\forall _{\mathrm{MNP}}\) :

Total volume of MNPs in single MDC

\(\forall _{\mathrm{MDC}}\) :

Volume of a single MDC

References

  • Ai, L., Vafai, K.: A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat Mass Transf. 49, 1568–1591 (2006)

    Article  Google Scholar 

  • Berthier, S.: Microfluidics for Biotechnology. Artech House Inc, Boston (2006)

    Google Scholar 

  • Bhujwalla, Z., McCoy, C., Glickson, J., GiIfies, R., Stubbs, M.: Estimations of intra- and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours. Br. J. Cancer 78(5), 606–611 (1998)

    Article  Google Scholar 

  • Cao, Q., Han, X., Li, L.: Numerical analysis of magnetic nanoparticle transport in microfluidic systems under influence of permanent magnets. J. Phys. D: Appl. Phys. 45(46), 465001 (2012)

    Article  Google Scholar 

  • Dreher, M.R., Liu, W., Michelich, C.R., Dewhirst, M.W., Yuan, F., Chilkoti, A.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98(5), 335–344 (2006)

    Article  Google Scholar 

  • Fournier, R.L.: Basic Transport Phenomena in Biomedical Engineering. CRC Press, New York (2011)

    Google Scholar 

  • Freitas Jr., R.A.: Nanomedicine (Vol. I: Basic copabilities). Bioscience, George town (1999)

    Google Scholar 

  • Graff, B., Bjørnæs, I., Rofstad, E.: Macromolecule uptake in human melanoma xenografts: relationships to blood supply, vascular density, microvessel permeability and extracellular volume fraction. Eur. J. Cancer 36, 1433–1440 (2000)

    Article  Google Scholar 

  • Grief, A., Richardson, G.: Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005)

    Article  Google Scholar 

  • Habibi, M.R., Ghasemi, M.: Numerical study of magnetic nanoparticles concentration in biofluid (blood) under influence of high gradient magnetic field. J. Magn. Magn. Mater. 323, 32–38 (2011)

    Article  Google Scholar 

  • Habibi, M.R., Ghassemi, M., Hamedi, M.H.: Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream. J. Magn. Magn. Mater. 324, 1473–1482 (2012)

    Article  Google Scholar 

  • Hashizume, H., Baluk, P., Morikawa, S., McLean, J.W., Thurston, G., Roberge, S., Rakesh, K., McDonald, D.M.: Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000)

    Article  Google Scholar 

  • Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., Jain, R.K.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95, 4607–4612 (1998)

    Article  Google Scholar 

  • Jain, R.K.: Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987)

    Google Scholar 

  • Jain, R.K., Baxter, L.T.: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032 (1988)

    Google Scholar 

  • Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)

    Article  Google Scholar 

  • Késmárky, G., Kenyeres, P., Rábai, M., Tóth, K.: Plasma viscosity: a forgetten variable. Clin. Heortheol. Microcirc. 39, 243–246 (2008)

    Google Scholar 

  • Keangin, P., Vafai, K., Rattanadecho, P.: Electromagnetic field effects on biological materials. Int. J. Heat Mass Transf. 65, 389–399 (2013)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K.: The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf. 42, 939–953 (2006)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K., Kangarlul, A.: Computational modeling of cerebral diffusion-application to stroke imaging. Magn. Reson. Imaging 21, 651–661 (2003)

    Article  Google Scholar 

  • Khashan, S.A., Furlani, E.P.: Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluidics 12, 565–580 (2012)

    Article  Google Scholar 

  • Kim, D.H., Lipke, E.A., Kim, P., Cheong, R., Thompson, S., Delannoy, M., Suh, K., Tung, L., Levchenko, A.: Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Appl. Biol. Sci. 107(2), 565–570 (2010)

    Google Scholar 

  • Klinbun, W., Vafai, K., Rattanadecho, P.: Electromagnetic field effects on transport through porous media. Int. J. Heat Mass Transf. 55, 325–335 (2012)

    Article  Google Scholar 

  • Li, X., Yao, K., Liu, Z.: CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field. J. Magn. Magn. Mater. 320, 1753–1758 (2008)

    Article  Google Scholar 

  • Loukopoulos, V.C., Tzirtzilakis, E.E.: Biomagnetic channel flow in spatially varying magnetic field. Int. J. Eng. Sci. 42, 571–590 (2004)

    Article  Google Scholar 

  • Lunnoo, T., Puangmali, T.: Capture efficiency of biocompatible magnetic nanoparticles in arterial flow: a computer simulation for magnetic drug targeting. Nanoscale Res. Lett. 10, 426 (2015)

    Article  Google Scholar 

  • Nacev, A., Beni, C., Bruno, O., Shapiro, B.: The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater. 323, 651–668 (2011)

    Article  Google Scholar 

  • Okuhata, Y.: Delivery of diagnostic agents for magnetic resonance imaging. Adv. Drug Deliv. Rev. 37, 121–137 (1999)

    Article  Google Scholar 

  • Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, 167–181 (2003)

    Article  Google Scholar 

  • Ramanujan, S., Pluen, A., McKee, T.D., Brown, E.B., Boucher, Y., Jain, R.K.: Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys. J. 83, 1650–1660 (2002)

    Article  Google Scholar 

  • Saltzman, W.M.: Drug Delivery Engineering Principles for Drug Therapy. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Sarin, H.: Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. 2, 14 (2010)

    Article  Google Scholar 

  • Sharma, S., Singh, U., Katiyar, V.K.: Modeling and in vitro study on capture efficiency of magnetic nanoparticles transported in an implant assisted cylindrical tube under magnetic field. Microfluid. Nanofluidics 19, 1061–1070 (2015)

    Article  Google Scholar 

  • Shaw, S., Murthy, P.: Magnetic targeting in the impermeable microvessel with two-phase fluid model—Non-Newtonian characteristics of blood. Microvasc. Res. 80, 209–220 (2010)

    Article  Google Scholar 

  • Swartz, M.A., Fleury, M.E.: Insterstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9, 229–256 (2007)

    Article  Google Scholar 

  • Waite, L., Fine, J.: Applied Biofluid Mechanics. McGraw-Hill, Chicago (2007)

    Google Scholar 

  • Wenger, M.P., Bozec, L., Horton, M.A., Mesquida, P.: Mechanical properties of collagen fibrils. Biophys. J. 93, 1255–1263 (2007)

    Article  Google Scholar 

  • Windberger, U., Bartholovitsch, A., Plasenzotti, R., Korak, K.J., Heinze, G.: Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species reference values and comparison of data. Exp. Physiol. 88(3), 431–440 (2003)

    Article  Google Scholar 

  • Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., Jain, R.K.: Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghassemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ne’mati, S.M.A., Ghassemi, M. & Shahidian, A. Numerical Investigation of Drug Delivery to Cancerous Solid Tumors by Magnetic Nanoparticles Using External Magnet. Transp Porous Med 119, 461–480 (2017). https://doi.org/10.1007/s11242-017-0893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0893-1

Keywords

Navigation