Skip to main content
Log in

Stokes Flow Through a Boolean Model of Spheres: Representative Volume Element

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The Stokes flow is numerically computed in porous media based on 3D Boolean random sets of spheres. Two configurations are investigated in which the fluid flows inside the spheres or in the complementary set of the spheres. Full-field computations are carried out using the Fourier method of Wiegmann (2007). The latter is applied to large system sizes representative of the microstructure. The overall permeability of the two models as well as the representative volume element are estimated as a function of the pore volume fraction. We give numerical estimates for the asymptotic behavior of the permeability in the dilute limit for the solid phase, and close to the percolation threshold of the pores. FFT maps of the velocity field are presented, for increasing values of the pore volume fraction. The patterns of the local velocity field is analyzed using various morphological criteria. The tortuosity of the streamlines is found to be much higher than the geometrical tortuosity, for both models. The histograms of the velocity field are computed at increasing pore volume fraction. The covariance of orientation is used to characterize the spatial correlation of the velocity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altendorf, H., Jeulin, D.: Stochastic modeling of a glass fiber reinforced polymer. In: Mathematical Morphology and Its Applications to Image and Signal Processing, vol. 6671, pp. 439–450. Kluwer Academic, New York (2011)

  • Azzimonti, D.F., Willot, F., Jeulin, D.: Optical properties of deposit models for paints: full-fields FFT computations and representative volume element. J. Mod. Optics 60(7), 519–528 (2013)

    Article  Google Scholar 

  • Belov, E.B., Lomov, S.V., Verpoest, I., Peters, T., Roose, D., Parnas, R.S., Hoes, K., Sol, H.: Modelling of permeability of textile reinforcements: lattice Boltzmann method. Compos. Sci. Technol. 64(7–8), 1069–1080 (2004)

    Article  Google Scholar 

  • Bignonnet, F., Dormieux, L.: FFTbased bounds on the permeability of complex microstructures. Int. J. Numer. Anal. Methods Geomech. 38(16), 1707–1723 (2014)

    Article  Google Scholar 

  • Boutin, C.: Study of permeability by periodic and self-consistent homogenisation. Eur. J. Mech. A/Solids 19(4), 603–632 (2000)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Cheng, H., Papanicolaou, G.: Flow past periodic arrays of spheres at low Reynolds number. J. Fluid Mech. 335, 189–212 (1997)

    Article  Google Scholar 

  • Childress, S.: Viscous flow past a random array of spheres. J. Chem. Phys. 56(6), 2527–2539 (1972)

    Article  Google Scholar 

  • Doi, M.: A new variational approach to the diffusion and the flow problem in porous media. J. Phys. Soc. Japan 40(2), 567–572 (1976)

    Article  Google Scholar 

  • Dormieux, L., Kondo, D., Ulm, F.J.: Microporomechanics. Wiley, Chichester (2006)

    Book  Google Scholar 

  • Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for Darcy law in random media. Proc. R. Soc. A 462(2074), 2949–2963 (2006)

    Article  Google Scholar 

  • Ene, I.H., Sanchez-Palencia, É.: Équations et phénomènes de surface pour lécoulement dans un modele de milieu poreux. J. de mécanique 14(1), 73–108 (1975)

    Google Scholar 

  • Feng, S., Halperin, B.I., Sen, P.N.: Transport properties of continuum systems near the percolation threshold. Phys. Rev. B 35(1), 197–214 (1987)

    Article  Google Scholar 

  • Happel, J.: Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE 4(2), 197–201 (1958)

    Article  Google Scholar 

  • Hinch, E.J.: An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83(4), 695–720 (1977)

    Article  Google Scholar 

  • Howells, I.: Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64(3), 449–476 (1974)

    Article  Google Scholar 

  • Jeulin, D., Moreaud, M.: Percolation dagrégats multi-échelles de sphères et de fibres—application aux nanocomposites. Proceedings of Matériaux 2006, Dijon, pp. 341–348. www.archives-ouvertes.fr/hal-01163539. Accessed 12 June 2015

  • Johnson, L.D., Plona, J.T., Scala, C., Pasierb, F., Kojima, H.: Tortuosity and acoustic slow waves. Phys. Rev. Lett. 49(25), 1840–1844 (1982)

    Article  Google Scholar 

  • Johnson, D.L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)

    Article  Google Scholar 

  • Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  Google Scholar 

  • Karim, M.R., Krabbenhoft, K., Lyamin, A.V.: Permeability determination of porous media using large-scale finite elements and iterative solver. Int. J. Numer. Anal. Methods Geomech. 38(10), 991–1012 (2014)

    Article  Google Scholar 

  • Koo, S., Sangani, A.S.: Effective-medium theories for predicting hydrodynamic transport properties of bidisperse suspensions. Phys. Fluids 14(10), 3522–3533 (2002)

    Article  Google Scholar 

  • Kozeny, J.: Ueber kapillare leitung des wassers im boden. Sitzungsber Akad Wiss Wien 136, 271–306 (1927)

    Google Scholar 

  • Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J. Phys. Soc. Jpn. 14(4), 527–532 (1959)

    Article  Google Scholar 

  • Lee, B.H., Lee, S.K.: Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: random packing simulations and NMR micro-imaging study. J. Hydrol. 496, 122–141 (2013)

    Article  Google Scholar 

  • Martin, J.J., McCabe, L.W., Monrad, C.C.: Pressure drop through stacked spheres. Effect of orientation. Chem. Eng. Prog. 47, 91–94 (1951)

    Google Scholar 

  • Martys, N., Torquato, S., Bentz, D.: Universal scaling of fluid permeability for sphere packings. Phys. Rev. E 50(1), 403–408 (1994)

    Article  Google Scholar 

  • Matheron, G.: Remarques sur la loi de Darcy. École Nationale Supérieure des Mines, Note Géostatistique No59. http://www.cg.ensmp.fr/bibliotheque/public/MATHERON_Rapport_00085.pdf (1965). Accessed 12 June 2015

  • Matheron, G.: Genèse et signification énergétique de la loi de Darcy. Revue de l’institut français du pétrole et annales des combustibles liquides 21(11), 1697–1706 (1966)

    Google Scholar 

  • Matheron, G.: Élements pour une theorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  • Matheron, G.: The Theory of Regionalized Variables and its Applications. École Nationale Suprieure des Mines, Paris (1971)

    Google Scholar 

  • Matyka, M., Koza, Z.: How to calculate tortuosity easily? AIP Conf. Proc. 1453, 17–22 (2012)

    Article  Google Scholar 

  • Monchiet, V., Bonnet, G., Lauriat, G.: A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium. C. R. Mécanique 337(4), 192–197 (2009)

    Article  Google Scholar 

  • Nguyen, T.-K., Monchiet, V., Bonnet, G.: A Fourier based numerical method for computing the dynamic permeability of periodic porous media. Eur. J. Mech. B/Fluids 37, 90–98 (2013)

    Article  Google Scholar 

  • Perrot, C., Chevillotte, F., Panneton, R.: Dynamic viscous permeability of an open-cell aluminum foam: computations versus experiments. J. Appl. Phys. 103(2), 024909 (2008)

    Article  Google Scholar 

  • Peyrega, C., Jeulin, D.: Estimation of acoustic properties and of the representative volume element of random fibrous media. J. Appl. Phys. 113(10), 104901 (2013)

    Article  Google Scholar 

  • Prager, S.: Viscous flow through porous media. Phys. Fluids 4(12), 1477–1482 (1961)

    Article  Google Scholar 

  • Priour Jr, D.J.: Percolation through voids around overlapping spheres: a dynamically based finite-size scaling analysis. Phys. Rev. E 89(1), 012148 (2014)

    Article  Google Scholar 

  • Redenbach, C., Wirjadi, O., Rief, S., Wiegmann, A.: Modelling a ceramic foam for filtration simulation. Adv. Eng. Mater. 13(3), 171–177 (2011)

    Article  Google Scholar 

  • Richardson, F.J., Zaki, N.W.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3(2), 65–73 (1954)

    Article  Google Scholar 

  • Rintoul, M.D., Torquato, S.: Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model. J. Phys. A Math. Gen. 30(16), 585–592 (1997)

    Article  Google Scholar 

  • Rubinstein, J., Torquato, S.: Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds. J. Fluid Mech. 206, 25–46 (1989)

    Article  Google Scholar 

  • Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  Google Scholar 

  • Sangani, A.S., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8(4), 343–360 (1982)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  • Torquato, S., Lu, B.: Rigorous bounds on the fluid permeability: effect of polydispersivity in grain size. Phy. Fluids A Fluid Dyn. 2(4), 487–490 (1990)

    Article  Google Scholar 

  • van der Marck, S.C.: Network approach to void percolation in a pack of unequal spheres. Phys. Rev. Lett. 77(9), 1785–1788 (1996)

    Article  Google Scholar 

  • Weissberg, L.H., Prager, S.: Viscous flow through porous media. III. Upper bounds on the permeability for a simple random geometry. Phys. Fluids 13(12), 2958–2965 (1970)

    Article  Google Scholar 

  • Wiegmann, A.: Computation of the permeability of porous materials from their microstructure by FFF-Stokes. Berichte Fraunhofer ITWM 129. http://kluedo.ub.unikl.de/files/1984/bericht129.pdf (2007). Accessed 22 July 2015

  • Willot, F., Jeulin, D.: Elastic behavior of composites containing boolean random sets of inhomogeneities. Int. J. Eng. Sci. 47(2), 313–324 (2009)

    Article  Google Scholar 

  • Willot, F., Jeulin, D.: Elastic and electrical behavior of some random multiscale highly-contrasted composites. Int. J. Multiscale Comput. Eng. 9(3), 308–326 (2010)

    Google Scholar 

  • Zick, A.A., Homsy, G.M.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–26 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to the results presented has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant agreement 303429. The authors thank an anonymous referee for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Willot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, B., Willot, F. & Jeulin, D. Stokes Flow Through a Boolean Model of Spheres: Representative Volume Element. Transp Porous Med 109, 711–726 (2015). https://doi.org/10.1007/s11242-015-0545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0545-2

Keywords

Navigation