Skip to main content

Advertisement

Log in

Toward Cleaner Geothermal Energy Utilization: Capturing and Sequestering CO\(_2\) and H\(_2\)S Emissions from Geothermal Power Plants

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Field scale reactive transport models of CO\(_2\) and H\(_2\)S mineral sequestration in basalts were developed with a focus on Reykjavík Energy’s ongoing CarbFix and SulFix sour gas re-injection tests at Hellisheidi geothermal power plant, SW-Iceland. Field data, such as drill cuttings and a calcite cap-rock overlying the high-temperature geothermal reservoir, suggest that mineral CO\(_2\) and H\(_2\)S sequestration already plays an important role within Hellisheidi geothermal system. The data indicate CO\(_2\) sequestration to be most intensive from 550–800-m depth below surface, while H\(_2\)S sequestration is most intensive below 800-m depth. Injecting and precipitating CO\(_2\) and H\(_2\)S into nearby formations with the objective of imitating and accelerating natural sequestration processes should therefore be considered as an environmentally benign process. Reactive transport simulations predict rapid and efficient mineralization of both CO\(_2\) and H\(_2\)S into thermodynamically stable minerals, with calcite, magnesite, and pyrrhotite being the favored carbonate and sulfide minerals to form. At intermediate depths and low temperatures (25–90 \(^\circ \)C), calcite is the main CO\(_2\) sequestering carbonate predicted to form, while magnesite is the only carbonate predicted to form at high temperatures (\(>\)250 \(^\circ \)C). Despite only being indicative, it is concluded from this study that the capture and sequestration of CO\(_2\) and H\(_2\)S from geothermal power plants are a viable option for reducing their gas emissions and that basalts may comprise ideal geological CO\(_2\) and H\(_2\)S storage formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alfredsson, H., Oelkers, E., Hardarson, B., Franzson, H., Gíslason, S.: The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. Int. J. Greenh. Gas Control 12, 399–418 (2013)

    Article  Google Scholar 

  • Aradóttir, E., Sigurdardóttir, H., Sigfússon, B., Gunnlaugsson, E.: CarbFix—a CCS pilot project imitating and accelerating natural CO\(_2\) sequestration. Greenh. Gases Sci. Technol. 1, 105–118 (2011)

    Article  Google Scholar 

  • Aradóttir, E., Sonnenthal, E., Björnsson, G., Jónsson, H.: Multidimensional reactive transport modeling of CO\(_2\) mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int. J. Greenh. Gas Control 9, 24–40 (2012a)

    Article  Google Scholar 

  • Aradóttir, E.S.P., Sonnenthal, E.L., Jónsson, H.: Development and evaluation of a thermodynamic dataset for phases of interest in CO\(_2\) sequestration in basaltic rocks. Chem. Geol. 304–305:26–38, http://dx.doi.org/10.1016/j.chemgeo.2012.01.031 (2012b)

  • Arnorsson, S.: Hydrothermal systems in Iceland: structure and conceptual models. 1. High-temperature areas. Geothermics 24, 561–602 (1995a)

    Article  Google Scholar 

  • Arnorsson, S.: Hydrothermal systems in Iceland: structure and conceptual models. 2. Low-temperature areas. Geothermics 24, 329–603 (1995b)

    Google Scholar 

  • Benning, L., Wilkin, R., Barnes, H.: Reaction pathways in the Fe-S system below 100\(^\circ \)C. Chem. Geol. 167, 25–51 (2000)

    Article  Google Scholar 

  • Broecker, W.: Climate change: CO\(_2\) arithmetic. Science 315, 1371 (2007)

    Article  Google Scholar 

  • Cahill, C., Benning, L., Barnes, H., Parise, J.: In situ time-resolved X-ray diffraction of iron sulfides during hydrothermal pyrite growth. Chem. Geol. 167, 53–63 (2000)

    Article  Google Scholar 

  • Carroll, S., Mroczek, E., Alai, M., Ebert, M.: Amorphous silica precipitation (60 to 120 \(^\circ \)C): comparison of laboratory and field rates. Geochim. Cosmochim. Acta 62, 1379–1396 (1998)

    Article  Google Scholar 

  • Finsterle, S.: iTOUGH2 User’s Guide. LBNL-40040. Lawrence Berkeley National Laboratory, Berkeley, CA (1999)

  • Flaathen, T., Gíslason, S., Oelkers, E., Sveinbörnsdottir, A.: Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO\(_2\) sequestration in basaltic rocks. Appl. Geochem. 24, 463–474 (2009)

    Article  Google Scholar 

  • Franzson, H., Gunnlaugsson, E., Árnason, K., Saemundsson, K., Steingr\(\acute{\rm m}\)sson, B., Hardarson, B.S.: The Hengill Geothermal System, Conceptual Model and Thermal Evolution. In: Proceedings, World Geothermal Congress, Bali, Indonesia, 25–29 April (2010)

  • Gebrehiwot, K., Koestono, H., Franzson, H., Mortensen, A.K.: Borehole geology and hydrothermal alteration of well HE-24, hellisheidi geothermal field, SW-Iceland. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April (2010)

  • Gíslason, S., Oelkers, E.: Mechanisms, rates and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a funciton of temperature. Geochim. Cosmochim. Acta 67, 3817–3832 (2003)

    Article  Google Scholar 

  • Gíslason, S., Heaney, P., Oelkers, E., Schott, J.: Kinetic and thermodynamic properties of moganite, a novel silica polymorph. Geochim. Cosmochim. Acta 61, 1193–1204 (1997)

    Article  Google Scholar 

  • Gíslason, S.R., Wolff-Boenisch, D., Stefánsson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardóttir, H., Sigfússon, B., Broecker, W.S., Matter, J.M., Stute, M., Axelsson, G., Fridriksson, T.: Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Int. J. Greenh. Gas Control 4, 537–545 (2010)

  • Gislason, S.R., Oelkers, E.H.: Carbon storage in basalt. Science 344, 373 (2014)

  • Gudbrandsson, S., Wolff-Boenisch, D., Gíslason, S., Oelkers, E.: An experimental study of crystalline basalt dissolution from 2 \(\le \) pH \(\le \) 11 and temperatures from 5 to 75 \(^\circ \)C. Geochim. Cosmochim. Acta 75, 5496–5509 (2011)

    Article  Google Scholar 

  • Gunnarsson, G., Arnaldsson, A., Oddsdóttir, A.L.: Model simulations of the Hengill Area, Southwestern Iceland. Transp. Porous Media 90, 3–22 (2011a). doi:10.1007/s11242-010-9629-1

    Article  Google Scholar 

  • Gunnarsson, I., Arnórsson, S., Jakobsson, S.: Precipitation of poorly crystalline antigorite under hydrothermal conditions. Geochim. Cosmochim. Acta 69, 2813–2828 (2005)

    Article  Google Scholar 

  • Gunnarsson, I., Sigfússon, B., Stefánsson, A., Scott, S., Gunnlaugsson, E.: Injection of H\(_2\)S from Hellisheidi power plant, Iceland. In: Proceedings, 36th Workshop on Geothermal Reservoir Engineering (2011b)

  • Gysi, A., Stefánsson, A.: Mineralogical aspects of CO\(_2\) sequestration during hydrothermal basalt alteration—an experimental stdy at 75 to 250 degrees C and elevated pCO\(_2\). Chem. Geol. 306, 146–159 (2012)

    Article  Google Scholar 

  • Helgadóttir, H.M., Snaebjörnsdottir, S.O., Níelsson, S., Gunnarsdóttir, S.H., Matthíasdóttir, T., Hardarson, B.S., Einarsson, G.M., Franzson, H.: Geology and hydrothermal alteration in the reservoir of the Hellisheidi high temperature system, SW-Iceland. In: Proceedings, World Geothermal Congress, Bali, Indonesia, 25–29 April (2010)

  • Holland, T., Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343 (1998)

    Article  Google Scholar 

  • Knauss, K.G., Johnson, J.W., Steefel, C.I.: Evaluation of the impact of CO\(_2\), co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO\(_2\). Chem. Geol. 217, 339–350 (2005)

    Article  Google Scholar 

  • Kristmannsdóttir, H., Tómasson, I.: Zeolite Zones in Geothermal Areas in Iceland in Natural Zeolites. Pergamon Press, Oxford (1978)

    Google Scholar 

  • Matter, J., Broecker, W., Gíslason, S.R., Gunnlaugsson, E., Oelkers, E., Stute, M., Sigurdardóttir, H., Stefánsson, A., Alfredsson, H., Aradóttir, E., Axelsson, G., Sigfússon, B., Wolff-Boenisch, D.: The CarbFix Pilot Project—storing carbon dioxide in basalt. Elements 4, 5579–5585 (2011)

    Google Scholar 

  • Neuhoff, P., Fridriksson, T., Arnorsson, S., Bird, D.: Porosity changes and mineral paragenesis during low-grade metamorphism at Teigarhorn, eastern Iceland. Am. J. Sci. 299, 467–501 (1999)

    Article  Google Scholar 

  • Neuhoff, P., Rogers, K., Stannius, L., Bird, D., Pedersen, A.: Regional very low-grade metamorphism of basaltic lavas, Disko-Nuussuaq region, West-Greenland. Lithos 92, 55–85 (2006)

    Article  Google Scholar 

  • Níelsson, S., Franzson, H.: Geology and Hydrothermal alteration of the Hverahlíd HT-System, SW-Iceland. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010

  • Oelkers, E., Cole, D.: Carbon dioxide sequestration: a solution to a global problem. Elements 4, 305–310 (2008)

    Article  Google Scholar 

  • Oelkers, E., Gíslason, S.: The mechamism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentrations at 25\(^\circ \)C and pH = 3 and 11. Geochim. Cosmochim. Acta 65, 3671–3681 (2001)

    Article  Google Scholar 

  • Oelkers, E., Gíslason, S., Matter, J.: Mineral carbonation of CO\(_2\). Elements 4, 331–335 (2008)

    Google Scholar 

  • Palandri, J., Kharaka, Y.: A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Report 2004–1068 (2004)

  • Palandri, J., Kharaka, Y.: Ferric iron-bearing sediments as a mineral trap for co\(_2\) sequestration: iron reduction using sulfur-bearing waste gas. Chem. Geol. 217, 351–364 (2005)

    Article  Google Scholar 

  • Pruess, K.: Mathematical modeling of fluid flow and heat transfer in geothermal systems—an introduction in five lectures. United Nations University Geothermal Training Programme 2002—Report 3 and LBNL-51295 (2002)

  • Ragnheidardóttir, E., Sigurdardóttir, H., Kristjánsdóttir, H., Harvey, W.: Opportunities and challenges for CarbFix: An evaluation of capacities and costs for the pilot scale mineralization sequestration project at Hellisheidi, Iceland and beyond. Int. J. Greenh. Gas Control 5, 1065–1072 (2011)

  • Rezvani Khalilabad, M., Axelsson, G., Gíslason, S.: Aquifer characterization with tracer test technique; permanent CO\(_2\) sequestration into basalt, SW Iceland. Mineral. Mag. 72(1), 121–125 (2008)

    Article  Google Scholar 

  • Rickard, D., Luther, G.W.: Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007)

    Article  Google Scholar 

  • Rimstidt, J.D., Barnes, H.L.: The kinetics of silica–water reactions. Geochim. Cosmochim. Acta 44, 1683–1699 (1980)

  • Scott, S., Gunnarsson, I., Arnórsson, S., Gunnlaugsson, E.: Gas chemistry of the Hellisheidi geothermal field, SW-Iceland. In: Proceedings, 36th Workshop on Geothermal Reservoir Engineering (2011)

  • Sigfússon, B., Gíslason, S., Matter, J., Stute, M., Gunnlaugsson, E., Gunnarsson, I., Aradóttir, E., Sigurdardóttir, H., Mesfin, K., Alfredsson, H., Wolff-Boenisch, D., Arnarsson, M., Oelkers, E.: Injection of dissolved CO\(_2\) into the subsurface: A novel carbon storage method (in review)

  • Steefel, C.I., Maher, K.: Fluid-rock interaction: a reactive transport approach. Rev. Mineral. Geochem. 70, 485–533 (2009)

    Article  Google Scholar 

  • Stefánsson, A.: Dissolution of primary minerals of basalt in natural waters I. Calculation of mineral solubilities from 0\(^\circ \)C to 350\(^\circ \)C. Chem. Geol. 172, 225–250 (2001)

    Article  Google Scholar 

  • Stefánsson, A., Arnórsson, S., Gunnarsson, I., Kaasalainen, H.: H\(_2\)S Disposal at Hellisheidi Power Plant: A Geochemical Study (2009)

  • Stefánsson, A., Arnórsson, S., Gunnarsson, I., Kaasalainen, H., Gunnlaugsson, E.: The geochemistry and sequestration of H\(_2\)S into the geothermal system at Hellisheidi, Iceland. Volcan. Geotherm. Res. 202:179–188 (2011)

  • Stockmann, G., Wolff-Boenisch, D., Gíslason, S., Oelkers, E.: Do carbonate precipitates affect dissolution kinetics? 1: basaltic glass. Chem. Geol. 284, 306–316 (2011)

    Article  Google Scholar 

  • Walker, G.: Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland. J. Geol. 68, 515–528 (1960)

    Article  Google Scholar 

  • Wiese, F., Fridriksson, T., Armannsson, H.: CO\(_2\) fixation by calcite in high-temperature geothermal systems in Iceland. Tech. rep., ISOR-2008/003, Iceland Geosurvey, Report available at: www.os.is/gogn/Skyrslur/ISOR-2008/ISOR-2008-003.pdf (2008)

  • World Health Organization ROfE.: Air quality guidelines for Europe. European Series No. 91 (2000)

  • Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT User’s Guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. LBNL-55460. Lawrence Berkeley National Laboratory, Berkeley, CA (2005)

  • Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO\(_2\) geologic sequestration. Comput. Geosci. 32, 146–165 (2006)

    Google Scholar 

  • Xu, T., Apps, J., Pruess, K., Yamamoto, H.: Numerical modeling of injection and mineral trapping of CO\(_2\) with H\(_2\)S and SO\(_2\) in a sandstone formation. Chem. Geol. 242, 319–346 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Einar Örn Thrastarson and Trausti Kristinsson for their never-ending contribution to CarbFix and SulFix. We also thank Karsten Pruess, Nic Spycher, and Stefan Finsterle at Lawrence Berkeley National Laboratory, Andri Arnaldsson at Vatnaskil Consulting Engineers, Andri Stefánsson, Helgi A. Alfredsson, Sigurdur R. Gíslason, and Snorri Gudbrandsson at the Institute of Earth Sciences at the University of Iceland, Martin Stute and Juerg M. Matter at Columbia University, Eric H. Oelkers at the University in Toulouse, and Gudni Axelsson, Gunnlaugur Einarsson and Thráinn Fridriksson at Iceland GeoSurvey. This work was funded by Reykjavík Energy, the 7th Framework Programme of the EC (project no. 283148) and GEORG Geothermal Research Group (project no. 09-02-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda S. P. Aradóttir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aradóttir, E.S.P., Gunnarsson, I., Sigfússon, B. et al. Toward Cleaner Geothermal Energy Utilization: Capturing and Sequestering CO\(_2\) and H\(_2\)S Emissions from Geothermal Power Plants. Transp Porous Med 108, 61–84 (2015). https://doi.org/10.1007/s11242-014-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0316-5

Keywords

Navigation