Skip to main content
Log in

Analytical Solution Incorporating History-Dependent Processes for Quick Assessment of Capillary Trapping During CO2 Geological Storage

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Carbon storage in saline formations is considered as a promising option to ensure the necessary decrease of CO2 anthropogenic emissions. Its industrial development in those formations is above all conditioned by its safety demonstration. Assessing the evolution of trapped and mobile CO2 across time is essential in the perspective of reducing leakage risks. In this work, we focus on residual trapping phenomenon occurring during the wetting of the injected CO2 plume. History dependent effects are of first importance when dealing with capillary trapping. We then apply the classical fractional flow theory (Buckley–Leverett type model) and include trapping and hysteresis models; we derive an analytical solution for the temporal evolution of saturation profile and of CO2 trapped quantity when injecting water after the gas injection (“artificial imbibition”). The comparison to numerical simulations for different configurations shows satisfactory match and justifies, in the case of industrial CO2 storage, the assumptions of incompressible flow with no consideration of capillary pressure. The obtained analytical solution allows the quick assessment of both the quantity and the location of mobile gas left during imbibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

q :

Volumetric flow rate, m3 s−1

A :

Area, m2

S :

Saturation

f :

Volumetric fractional flow

h :

Aquifer height, m

T :

Injection time, s

V :

Volume, m3

fr :

Mass fraction

k :

Permeability

Q :

Injection volumetric flow, m3 s−1

μ :

Viscosity, Pa s

λ :

Mobility

\({\varphi}\) :

Porosity

r :

Radius, m

\({\xi}\) :

Dimensionless radius

ζ :

Similarity variable

t :

Time, s

τ :

Dimensionless time

P :

Pressure, Pa

ρ :

Density, kg m−3

g:

Gas phase

l:

Liquid phase

Δ:

Flow reversal

r:

Residual

max:

Maximum

rel:

Relative

+:

Upstream

−:

Downstream

shocki:

Shock no.i

*:

Chosen (given)

collision:

Collision

freeg:

Mobile gas

c:

Capillary

References

  • Bachu S.: Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into CO2 phase space. Energy Convers. Manag. 43, 87–102 (2002)

    Article  Google Scholar 

  • Bachu S., Gunther W.D., Perkins E.H.: Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers. Manag. 35(4), 269–279 (1994)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Brooks R.H., Corey A.T.: Hydraulic properties of porous media. J. Irrig. Drain. Div. Am. Soc. Civil Eng. 92, 61–88 (1966)

    Google Scholar 

  • Buckley S.E., Leverett M.C.: Mechanism of fluid displacements in sands. Trans. AIME 146, 107–116 (1942)

    Google Scholar 

  • Carlson, F.M.: Simulation of relative permeability hysteresis to the nonwetting phase. In: SPE 10157, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, October 5–7 (1981)

  • de Gennes P.G., Brochard-Wyart F., Quere D.: Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves. Springer-Verlag, New York (2003)

    Google Scholar 

  • Dentz M., Tartakovsky D.M.: Abrupt-interface solution for carbon dioxide injection into porous media. Transp. Porous Med. 79, 15–27 (2009)

    Article  Google Scholar 

  • Doughty C.: Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. Energy Convers. Manag. 48, 1768–1781 (2007)

    Article  Google Scholar 

  • Doughty, C.: User’s guide for hysteretic capillary pressure and relative permeability functions in iTOUGH2. In: Report LBNL-2483E. Lawrence Berkeley National Laboratory, Berkeley, CA, USA (2009)

  • EC (European Commission): Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12,EC, 2008/1/EC and Regulation (EC) No 1013/2006 (2009).

  • Ennis-King J., Paterson L.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J. 10(3), 349–356 (2005)

    Google Scholar 

  • Esposito, A., Benson, S.: Remediation of possible leakage from geologic CO2 storage reservoirs into groundwater aquifers. In: Proceedings of the Greenhouse Gas Control Technologies—10th International Conference, Amsterdam, The Netherlands. Sept. 19–23 (2010)

  • Furati K. M.: Effects of relative permeability history dependence on two-phase flow in porous media. Transp. Porous Med. 28, 181–203 (1997)

    Article  Google Scholar 

  • Gasda S.E., Nordbotten J.M., Celia M.A.: Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 13, 469–481 (2009)

    Article  Google Scholar 

  • Gunter W.D., Wiwchar B., Perkins E.H.: Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Miner. Pet. 59(1–2), 121–140 (1997)

    Article  Google Scholar 

  • Hesse, M.A., Tchelepi, H.A., Orr, F.M. Jr: Scaling analysis of the migration of CO2 in saline aquifers. In: SPE Annual Technical Conference and Exhibition (SPE 102796), San Antonio, TX (2006)

  • Hesse M.A., Tchelepi H.A., Cantwell B.J., Orr F.M. Jr: Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363–383 (2007)

    Article  Google Scholar 

  • IEA Greenhouse Gas R&D Programme (IEA GHG): Role of Risk Assessment in Regulatory Framework for Geological Storage of CO2: Feedback from Regulators and Implementers. Report 2007/2, 88 p. (2007)

  • Intergovernmental Panel on Climate Change (IPCC): Special Report on Carbon Dioxide Capture and Storage [Metz, B., Davidson, O., de Connick, H., Loos, M., Meyer, L. (eds.)] Cambridge University Press, New York (2005)

  • Juanes, R., MacMinn, C.W.: Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In: SPE/DOE Symposium on Improved Oil Recovery (SPE 113496), Tulsa, OK, USA (2008)

  • Juanes, R., Patzek, T.W.: Multiscale finite element methods for miscible and immiscible flow in porous media. In: CD Proceedings of the International Groundwater Symposium of the IAHR, Berkeley, California, March 2002 (2002)

  • Juanes R., Spiteri E.J., Orr F.M. Jr, Blunt M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418 (2006). doi:10.1029/2005WR004806

    Article  Google Scholar 

  • Juanes R., MacMinn C.W., Szulczewski M.L.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Med. 82, 19 30 (2010)

    Article  Google Scholar 

  • Kochina I.N., Mikhailov N.N., Filinov M.V.: Groundwater mound damping. Int. J. Eng. Sci. 21, 413–421 (1983)

    Article  Google Scholar 

  • Land C.S.: Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. SPE J. 8, 149–156 (1968)

    Google Scholar 

  • Lax P.D.: The formation and decay of shock waves. Am. Math. Monthly 79(3), 227–241 (1972)

    Article  Google Scholar 

  • Lenhard R.J., Parker J.C.: A model for hysteretic constitutive relations governing multiphase flow—2. Permeability–saturation relations. Water Resour. Res. 23(12), 2197–2205 (1987)

    Article  Google Scholar 

  • Lenormand R., Zarcone C., Sarr A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 123–132 (1983)

    Article  Google Scholar 

  • MacMinn C.W., Szulczewski M.L., Juanes R.: CO2 migration in saline aquifers Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329–351 (2010)

    Article  Google Scholar 

  • Manceau, J.C., Réveillère, A., Rohmer, J.: Forcing gaseous CO2 trapping as a corrective technique in the case of abnormal behavior of a deep saline aquifer storage. In: Proceedings of the Greenhouse Gas Control Technologies—10th International Conference, Amsterdam, The Netherlands. Sept. 19–23 (2010)

  • McWorther D.B., Sunada D.K.: Exact integral solutions for two-phase flow. Water Resour. Res. 26(3), 399–413 (1990)

    Article  Google Scholar 

  • Medeiros H.B., Marchesin D., Paes Leme P.J.: Hysteresis in two-phase flow: a simple mathematical model. Comp. Appl. Math. 17(1), 81–99 (1998)

    Google Scholar 

  • Müller N.: Supercritical CO2-brine relative permeability experiments in reservoir rocks—literature review and recommendations. Transp. Porous Med. 87, 367–383 (2011)

    Article  Google Scholar 

  • Nghiem L., Yang C., Shrivastava V., Kohse B., Hassam M., Card C.: Risk mitigation trough the optimization of residual gas and solubility trapping for CO2 Storage in saline aquifers. Energy Procedia 1, 3015–3022 (2009)

    Article  Google Scholar 

  • Noh M., Lake L., Bryant S., Araque-Martinez A.: Implications of coupling fractional flow and geochemistry for CO2 injection in aquifers. SPE REE J. 10(4), 406–414 (2007)

    Google Scholar 

  • Nordbotten J.M., Celia M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)

    Article  Google Scholar 

  • Nordbotten J.M., Celia M.A., Bachu S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Med. 58(3), 339–360 (2005)

    Article  Google Scholar 

  • Parker J.C., Lenhard R.J.: A model for hysteretic constitutive relations governing multiphase flow—1. Saturation–pressure relations. Water Resour. Res. 23(12), 2187–2196 (1987)

    Article  Google Scholar 

  • Pinder G.F., Celia M.A.: Subsurface Hydrology. Wiley, Hoboken (2006)

    Book  Google Scholar 

  • Pruess K.: ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2. Report LBNL-57952. Lawrence Berkeley National Laboratory, Berkeley (2005)

    Book  Google Scholar 

  • Pruess K., Spycher N.: ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Convers. Manag. 48, 1761–1767 (2007)

    Article  Google Scholar 

  • Pruess K., Oldenburg C.M., Moridis G.: TOUGH2 User’s Guide, Version 2.0. Report LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley (1999)

    Book  Google Scholar 

  • Qi R., LaForce T.C., Blunt M.J.: Design of carbon dioxide storage in aquifers. Int. J. Greenh. Gas Control 3, 195–205 (2009)

    Article  Google Scholar 

  • Smoller J.: Shock Waves and Reaction–Diffusion Equations. Springer-Verlag, New York (1994)

    Google Scholar 

  • Spiteri E.J., Juanes R., Blunt M.J., Orr F.M. Jr: A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE J. 13(3), 277–288 (2008)

    Google Scholar 

  • Suicmez V.S., Piri M., Blunt M.J.: Effects of wettability and pore-level displacement on hydrocarbon trapping. Adv. Water Resour. 31, 503–512 (2008)

    Article  Google Scholar 

  • Valvatne, P.H.: Predictive pore-scale modeling of multiphase flow. A dissertation submitted to the Department of Earth Science and Engineering of Imperial College London in partial fulfillment of the requirements for the degree of Doctor of Philosophy (2004)

  • van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • van Kats F.M., van Duijn C.J.: A mathematical model for hysteretic two-phase flow in porous media. Transp. Porous Med. 43, 239–263 (2001)

    Article  Google Scholar 

  • Vilarrasa V., Bolster D., Dentz M., Olivella S., Carrera J.: Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp. Porous Med. 85, 619–639 (2010)

    Article  Google Scholar 

  • Welge H.J.: A simplified method for computing oil recovery by gas or water drive. Petrol. Trans. AIME 195, 91–98 (1952)

    Google Scholar 

  • Yortsos Y.C.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Med. 18, 107–129 (1995)

    Article  Google Scholar 

  • Zeidouni M., Pooladi-Darvish M., Keith D.: Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers. Int. J. Greenh. Gas Control 3, 600–611 (2009)

    Article  Google Scholar 

  • Zhou Q., Birkholzer J.T., Tsang C.F., Rutqvist J.: A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenh. Gas Control 2(4), 626–639 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Manceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manceau, JC., Rohmer, J. Analytical Solution Incorporating History-Dependent Processes for Quick Assessment of Capillary Trapping During CO2 Geological Storage. Transp Porous Med 90, 721–740 (2011). https://doi.org/10.1007/s11242-011-9812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9812-z

Keywords

Navigation