Skip to main content
Log in

Modelling the Flow of Yield-Stress Fluids in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Yield-stress is a problematic and controversial non-Newtonian flow phenomenon. In this article, we investigate the flow of yield-stress substances through porous media within the framework of pore-scale network modelling. We also investigate the validity of the Minimum Threshold Path (MTP) algorithms to predict the pressure yield point of a network depicting random or regular porous media. Percolation theory as a basis for predicting the yield point of a network is briefly presented and assessed. In the course of this study, a yield-stress flow simulation model alongside several numerical algorithms related to yield-stress in porous media were developed, implemented and assessed. The general conclusion is that modelling the flow of yield-stress fluids in porous media is too difficult and problematic. More fundamental modelling strategies are required to tackle this problem in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\dot{\gamma}}\) :

Strain rate (s−1)

τ :

Stress (Pa)

τ o :

Yield-stress (Pa)

τ w :

Stress at tube wall (Pa)

\({\phi}\) :

Porosity

C :

Consistency factor in Herschel–Bulkley model (Pa.sn)

K :

Absolute permeability (m2)

L :

Tube length (m)

n :

Flow behavior index

P :

Pressure (Pa)

P y :

Yield pressure (Pa)

ΔP :

Pressure drop (Pa)

ΔP th :

Threshold pressure drop (Pa)

Q :

Volumetric flow rate (m3.s−1)

R :

Tube radius (m)

T :

Temperature (K, °C)

IPM:

Invasion percolation with memory algorithm

MTP:

Minimum threshold path

PMP:

Path of minimum pressure algorithm

TYP:

Threshold yield pressure

x l :

Lower boundary of the network model

x u :

Upper boundary of the network model

References

  • Al-Fariss, T.F., Pinder, K.L.: Flow of a shear-thinning liquid with yield stress through porous media. SPE 13840 (1984)

  • Balhoff M.T., Thompson K.E.: Modeling the steady flow of yield-stress fluids in packed beds. AIChE J. 50(12), 3034–3048 (2004)

    Article  Google Scholar 

  • Balmforth N.J., Craster R.V.: Geophysical Aspects of Non-Newtonian Fluid Mechanics. Springer, Berlin (2001)

    Google Scholar 

  • Barnes H.A.: The yield stress—a review or ‘παντα ρεı’—everything flows?. J. Non Newtonian Fluid Mech. 81(1), 133–178 (1999)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, vol. 1, 2nd edn. Wily, New York (1987)

    Google Scholar 

  • Blunt M.J.: Flow in porous media—pore-network models and multiphase flow. Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Blunt M.J., Jackson M.D., Piri M., Valvatne P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25, 1069–1089 (2002)

    Article  Google Scholar 

  • Carreau P.J., De Kee D., Chhabra R.P.: Rheology of Polymeric Systems. Hanser Publishers, New York (1997)

    Google Scholar 

  • Chaplain V., Mills P., Guiffant G., Cerasi P.: Model for the flow of a yield fluid through a porous medium. Journal de Physique II 2, 2145–2158 (1992)

    Article  Google Scholar 

  • Chase G.G., Dachavijit P.: Incompressible cake filtration of a yield stress fluid. Sep. Sci. Technol. 38(4), 745–766 (2003)

    Article  Google Scholar 

  • Chen M., Rossen W.R., Yortsos Y.C.: The flow and displacement in porous media of fluids with yield stress. Chem. Eng. Sci. 60, 4183–4202 (2005)

    Article  Google Scholar 

  • Chen M., Yortsos Y.C., Rossen W.R. A pore-network study of the mechanisms of foam generation. In: SPE Annual Technical Conference and Exhibition, Houston, Texas, SPE 90939, 26–29 September (2004)

  • Chen M., Yortsos Y.C., Rossen W.R.: Insights on foam generation in porous media from pore-network studies. Colloids Surf. A 256(2-3), 181–189 (2005)

    Article  Google Scholar 

  • Kharabaf H., Yortsos Y.C.: Invasion percolation with memory. Phys. Rev. E 55(6), 7177–7191 (1997)

    Article  Google Scholar 

  • Larson R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1999)

    Google Scholar 

  • Liu S., Masliyah J.H.: On non-Newtonian fluid flow in ducts and porous media - Optical rheometry in opposed jets and flow through porous media. Chem. Eng. Sci. 53(6), 1175–1201 (1998)

    Article  Google Scholar 

  • Øren P.E., Bakke S.: Reconstruction of berea sandstone and pore-scale modelling of wettability effects. J. Petrol. Sci. Eng. 39, 177–199 (2003)

    Article  Google Scholar 

  • Øren, P.E., Bakke, S., Amtzen, O.J.: Extending predictive capabilities to network models. In: SPE Annual Technical Conference and Exhibition, San Antonio, Texas, (SPE 38880) (1997)

  • Park, H.C.: The flow of non-Newtonian fluids through porous media. PhD thesis, Michigan State University (1972)

  • Park, H.C., Hawley, M.C., Blanks, R.F.: The flow of non-Newtonian solutions through packed beds. SPE 4722 (1973)

  • Pascal H.: Nonsteady flow through porous media in the presence of a threshold gradient. Acta Mechanica 39, 207–224 (1981)

    Article  Google Scholar 

  • Rossen W.R., Gauglitz P.A.: Percolation theory of creation and mobilization of foam in porous media. AIChE J. 36, 1176–1188 (1990)

    Article  Google Scholar 

  • Rossen W.R., Mamun C.K.: Minimal path for transport in networks. Phys. Rev. B 47, 11815–11825 (1993)

    Article  Google Scholar 

  • Roux S., Hansen A.: A new algorithm to extract the backbone in a random resistor network. J. Phys. A 20, L1281–Ll285 (1987)

    Article  Google Scholar 

  • Selyakov V.I., Kadet V.V.: Percolation Models for Transport in Porous Media with Applications to Reservoir Engineering. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  • Skelland A.H.P.: Non-Newtonian Flow and Heat Transfer. Wiley, New York (1967)

    Google Scholar 

  • Sochi, T.: Pore-scale modeling of Non-Newtonian flow in porous media. PhD thesis, Imperial College London (2007a)

  • Sochi, T.: Non-Newtonian code website. URL:http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemodelling/software/non-newtonian%20code (2007b)

  • Sochi T.: Pore-scale modeling of viscoelastic flow in porous media using a Bautista-Manero fluid. Int. J. Heat Fluid Flow 30(6), 1202–1217 (2009)

    Article  Google Scholar 

  • Sochi T., Blunt M.J.: Pore-scale network modeling of Ellis and Herschel-Bulkley fluids. J. Petrol. Sci. Eng. 60(2), 105–124 (2008)

    Article  Google Scholar 

  • Vradis G.C., Protopapas A.L.: Macroscopic conductivities for flow of Bingham plastics in porous media. J. Hydraul. Eng. 119(1), 95–108 (1993)

    Article  Google Scholar 

  • Wu Y.S., Pruess K., Witherspoon P.A.: Flow and displacement of Bingham non-Newtonian fluids in porous media. SPE Reserv. Eng. SPE 20051, 369–376 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha Sochi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sochi, T. Modelling the Flow of Yield-Stress Fluids in Porous Media. Transp Porous Med 85, 489–503 (2010). https://doi.org/10.1007/s11242-010-9574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9574-z

Keywords

Navigation