Skip to main content
Log in

Effects of Mineral Dissolution Ratios on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The main purpose of this article is to investigate, both theoretically and computationally, the effects of mineral dissolution ratios on the different respects of chemical-dissolution front instability problems in fluid-saturated porous media. In order to get a better understanding of how the mineral dissolution ratio affects the propagation and evolution of a planar chemical-dissolution front in an infinite space consisting of a fluid-saturated porous medium, the theoretical analysis method is used to derive the generous solution to the propagation speed of the planar chemical-dissolution front, while the computational simulation method is employed to simulate the detailed evolution process when the planar chemical-dissolution front is evolved into complicated morphologies at the supercritical Zhao numbers. The related theoretical results reveal that the mineral dissolution ratio plays an important role in controlling the propagation speed of a planar chemical-dissolution front in the fluid-saturated porous medium. An increase in the value of the mineral dissolution ratio can result in a remarkable decrease in the value of the propagation speed of a planar chemical-dissolution front. On the other hand, the related computational simulation results demonstrate that the mineral dissolution ratio has a considerable influence on the evolution pattern of a planar chemical-dissolution front during its propagation in the fluid-saturated porous medium. An increase in the mineral dissolution ratio can reduce the likelihood for a planar chemical-dissolution front to evolve from the initial planar shape into different morphologies within the fluid-saturated porous medium of finite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt-Epping P., Smith L.: Computing geochemical mass transfer and water/rock ratios in submarine hydrothermal systems: implications for estimating the vigour of convection. Geofluids 1, 163–181 (2001). doi:10.1046/j.1468-8123.2001.00014.x

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Elsevier, Amsterdam (1972)

    Google Scholar 

  • Chadam J., Hoff D., Merino E., Ortoleva P., Sen A.: Reactive infiltration instabilities. IMA J. Appl. Math. 36, 207–221 (1986). doi:10.1093/imamat/36.3.207

    Article  Google Scholar 

  • Chadam J., Ortoleva P., Sen A.: A weekly nonlinear stability analysis of the reactive infiltration interface. IMA J. Appl. Math. 48, 1362–1378 (1988)

    Google Scholar 

  • Chen J.S., Liu C.W.: Numerical simulation of the evolution of aquifer porosity and species concentrations during reactive transport. Comput. Geosci. 28, 485–499 (2002). doi:10.1016/S0098-3004(01)00084-X

    Article  Google Scholar 

  • Holzbecher E.O.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)

    Google Scholar 

  • Lewis R.W., Schrefler B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York (1998)

    Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. Springer, New York (1992)

    Google Scholar 

  • Ormond A., Ortoleva P.: Numerical modeling of reaction-induced cavities in a porous rock. J. Geophys. Res. 105, 16737–16747 (2000). doi:10.1029/2000JB900116

    Article  Google Scholar 

  • Ortoleva P., Chadam J., Merino E., Sen A.: Geochemical self-organization II: the reactive-infiltration instability. Am. J. Sci. 287, 1008–1040 (1987)

    Google Scholar 

  • Phillips O.M.: Flow and Reactions in Permeable Rocks. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Raffensperger J.P., Garven G.: The formation of unconformity-type uranium ore deposits: coupled hydrochemical modelling. Am. J. Sci. 295, 639–696 (1995)

    Google Scholar 

  • Schafer D., Schafer W., Kinzelbach W.: Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model. J. Contam. Hydrol. 31, 167–186 (1998a). doi:10.1016/S0169-7722(97)00060-0

    Google Scholar 

  • Schafer D., Schafer W., Kinzelbach W.: Simulation of reactive processes related to biodegradation in aquifers: 2. Model application to a column study on organic carbon degradation. J. Contam. Hydrol. 31, 187–209 (1998b). doi:10.1016/S0169-7722(97)00061-2

    Article  Google Scholar 

  • Scheidegger A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66, 3273–3278 (1961). doi:10.1029/JZ066i010p03273

    Article  Google Scholar 

  • Scheidegger A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1974)

    Google Scholar 

  • Steefel C.I., Lasaga A.C.: Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: Melchior, D.C., Basset, R.L. (eds) Chemical Modeling in Aqueous Systems II. American Chemical Society Symposium Series No. 416, pp. 213–225. American Chemical Society, Washington (1990)

    Google Scholar 

  • Steefel C.I., Lasaga A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  • Xu T.F., Samper J., Ayora C., Manzano M., Custodio E.: Modelling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J. Hydrol. (Amst.) 214, 144–164 (1999). doi:10.1016/S0022-1694(98)00283-2

    Article  Google Scholar 

  • Yeh G.T., Tripathi V.S.: A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour. Res. 27, 3075–3094 (1991). doi:10.1029/91WR02028

    Article  Google Scholar 

  • Zhao C., Xu T.P., Valliappan S.: Numerical modeling of mass transport problems in porous media: a review. Comput. Struc. 53, 849–860 (1994). doi:10.1016/0045-7949(94)90373-5

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Mühlhaus H.B.: Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comput. Methods Appl. Mech. Eng. 165, 175–186 (1998). doi:10.1016/S0045-7825(98)00038-3

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Mühlhaus H.B., Ord A.: Finite element modelling of rock alteration and metamorphic process in hydrothermal systems. Commun. Numer. Methods Eng. 17, 833–843 (2001). doi:10.1002/cnm.455

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Mühlhaus H.B., Ord A., Lin G.: Finite element modeling of three-dimensional steady-state convection and lead/zinc mineralization in fluid-saturated rocks. J. Comput. Methods Sci. Eng. 3, 73–89 (2003)

    Google Scholar 

  • Zhao C., Hobbs B.E., Ord A., Peng S., Mühlhaus H.B., Liu L.: Numerical modeling of chemical effects of magma solidification problems in porous rocks. Int. J. Numer. Methods Eng. 64, 709–728 (2005). doi:10.1002/nme.1372

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Hornby P., Ord A., Peng S.: Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks. Int. J. Numer. Methods Eng. 66, 1061–1078 (2006). doi:10.1002/nme.1581

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Ord A., Hornby P., Peng S.: Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks. Transp. Porous Media 73, 75–94 (2008a). doi:10.1007/s11242-007-9162-z

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Hornby P., Ord A., Peng S., Liu L.: Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Methods Geomech. 32, 1107–1130 (2008b). doi:10.1002/nag.661

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Ord A.: Fundamentals of Computational Geoscience. Springer, Berlin (2009)

    Google Scholar 

  • Zienkiewicz O.C.: The Finite Element Method. McGraw-Hill, London (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongbin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Hobbs, B.E., Ord, A. et al. Effects of Mineral Dissolution Ratios on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Media. Transp Porous Med 82, 317–335 (2010). https://doi.org/10.1007/s11242-009-9427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9427-9

Keywords

Navigation