Skip to main content
Log in

Pore-Scale Analysis of NAPL Blob Dissolution and Mobilization in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A pore-scale analysis of nonaqueous phase liquid (NAPL) blob dissolution and mobilization in porous media was presented. Dissolution kinetics of residual NAPLs in an otherwise water-saturated porous medium was investigated by conducting micromodel experiments. Changes in residual NAPL volume were measured from recorded video images to calculate the mass transfer coefficient, K and the lumped mass transfer rate coefficient, k. The morphological characteristics of the blobs such as specific and intrinsic area were found to be independent of water flow rate except at NAPL saturations below 2%. Dissolution process was also investigated by separating the mass transfer into zones of mobile and immobile water. The fractions of total residual NAPL perimeters in contact with mobile water and immobile water were measured and their relationship to the mass transfer coefficient was discussed. In general, residual NAPLs are removed by dissolution and mobilization. Although these two mechanisms were studied individually by others, their simultaneous occurrence was not considered. Therefore, in this study, mobilization of dissolving NAPL blobs was investigated by an analysis of the forces acting on a trapped NAPL blob. A dimensional analysis was performed to quantify the residual blob mobilization in terms of dimensionless Capillary number (Ca I). If Ca I is equal to or greater than the trapping number defined as \({{2\pi R_{\rm n} k_{\rm 0} k_{\rm rw}}/{\left[{(S_{\rm ni}-Da_{\rm I} P_{\rm v}^\# \Delta C^{\ast})V_{\rm p}}\right]}}\), then blob mobilization is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a i :

Intrinsic interfacial area (L2 L−3)

a 0 :

Specific NAPL interfacial area (L2 L−3)

A f :

Adjacent upstream area immediately preceding A t (L2)

A 0 :

Total area occupied by the NAPL blobs within A f (L2)

A t :

Target area of porous medium selected for analysis (L2)

A :

Area occupied by NAPL blobs within A t (L2)

Bo :

Bond number (\({{Bo={\Delta \rho gk_{\rm 0} k_{\rm rw}}/\sigma}}\))

Ca I :

Capillary number for water phase (\({{Ca_{\rm I}={\mu_{\rm w} u}/\sigma}}\))

Ca II :

Capillary number for NAPL phase (\({{Ca_{\rm II}={\mu_{\rm 0} u_{\rm 0}}/\sigma}}\))

\({Ca_{\rm I}^{\prime}}\) :

Capillary number for momentum transfer from water to NAPL phase \({\left({Ca_{\rm I}^{\prime}={\mu_{\rm w}({u-({{S_{\rm w}}/{1-S_{\rm w}}})u_{\rm 0}})}/\sigma} \right)}\)

\({Ca_{\rm II}^{\prime}}\) :

Capillary number for momentum transfer from NAPL to water phase\({\left({Ca_{\rm II}^{\prime}={\mu_{\rm 0} ({u_{\rm 0}-({{1-S_{\rm w}}/{S_{\rm w}}})u})}/\sigma} \right)}\)

C :

Contaminant concentration in the water phase (ML−3)

C eq :

Equilibrium concentration or solubility limit of NAPL in the water phase (ML−3)

d m :

Volumetric intrinsic phase average of a characteristic length (L)

D diff :

Molecular diffusion coefficient of NAPL in the water phase (L2 T−1)

Da I :

First Damkohler number (Da I = KL c/u)

h :

Average thickness of the micromodel (L)

k 0 :

Absolute permeability (L2)

k rw :

Relative permeability for water phase (−)

k ro :

Relative permeability for NAPL (−)

k wo :

Cross permeability (L2)

k :

Mass transfer coefficient (L3 L−2 T−1)

K :

Lumped mass transfer rate coefficient (L3 L−3 T−1)

[L]:

Length dimension

L * :

Dimension of A f perpendicular to the flow direction (L)

L c :

Characteristic length (L)

L m :

Total width of the micromodel perpendicular to the flow direction (L)

[M]:

Mass dimension

n :

Porosity (L3L−3)

\({N_{\rm t}^{\ast}}\) :

Trapping number (\({{N_{\rm t}^{\ast}={2\pi R_{\rm n} k_{\rm 0} k_{\rm rw}}/{[{(S_{\rm ni} -Da_{\rm I} pv \Delta C^{\ast})V_{\rm p}}]}}}\))

\({P_{\rm v}^\#}\) :

Number of pore volume (\({{P_{\rm v}^\# ={ut}/{L_{\rm c} n}}}\))

P :

Total interfacial NAPL perimeter within the target volumehA t (L)

Pe :

Peclet number (Pe = ud m/D diff)

Q :

Total flow rate (L3 T−1)

R e :

Reynolds number (Re = ud m/ν)

R 0 :

Radius of NAPL blob (L)

R n :

Radius of a pore throat (L)

S n :

Volumetric NAPL saturation (L3 L−3)

S ni :

Initial volumetric NAPL saturation (L3 L−3)

S w :

Volumetric water saturation (L3 L−3)

Sh :

Sherwood number (Sh = kd m/D diff)

Sh′:

Modified Sherwood number (\({{Sh^{\prime}={Kd_{\rm m}^2}/{D_{\rm diff}}}}\))

St :

Stanton number (St = k/u)

t :

Temporal time (T)

[T]:

Time dimension

u :

Specific discharge for water phase (L3 L−2 T−1)

u 0 :

Specific discharge for NAPL blob (L3 L−2 T−1)

V :

Temporal volume of residual NAPL (L3)

V i :

Initial volume of residual NAPL (L3)

V p :

Pore volume (L3)

V t :

Total volume of the porous matrix (L3)

x :

Direction of the one-dimensional flow field

ρ :

Density of NAPL (M L−3)

ρ w :

Density of water phase (M L−3)

Δρ :

Difference between NAPL and water densities (Δρρ wρ)

ν :

Kinematic viscosity of water phase (L2 T−1)

\({\sigma}\) :

Interfacial tension between NAPL and water phase (M T−2)

μ w :

Dynamic viscosity of water phase (M/LT)

μ 0 :

Dynamic viscosity of NAPL (M/LT)

References

  • Bora R., Maini B.B., Chakma A.: Flow visualization studies of solution gas drive process in heavy oil reservoirs with glass micromodel. SPE Reserv. Eval. Eng. 3, 224–229 (2000). doi:10.2118/64226-PA

    Google Scholar 

  • Bradford S.A., Leji F.J.: Estimating interfacial areas for multi-fluid soil systems. J. Contam. Hydrol. 27, 83–105 (1997). doi:10.1016/S0169-7722(96)00048-4

    Article  Google Scholar 

  • Browning F.H., Fogler H.S.: Fundamental study of the dissolution of calcium-phosphonates in porous media. AIChEJ. 42(10), 2883–2896 (1996). doi:10.1002/aic.690421017

    Article  Google Scholar 

  • Brusseau M.L.: Rate-limited mass transfer and transport of organic solutes in porous media that contain immobile immiscible organic liquid. Water Resour. Res. 28, 33–45 (1992). doi:10.1029/91WR02498

    Article  Google Scholar 

  • Brutsaert W.: Hydrogeology: An Introduction. Cambridge University, Cambridge (2005)

    Google Scholar 

  • Buckley J.: Multiphase displacement in micromodels. In: Norman, M. (eds) Interfacial Phenomena in Petroleum Technology, pp. 157–189. Marcel Decker Inc., New York (1991)

    Google Scholar 

  • Cary J.W.: Estimating the surface area of fluid phase interfaces in porous media. J. Contam. Hydrol. 15, 243–248 (1994). doi:10.1016/0169-7722(94)90029-9

    Article  Google Scholar 

  • Chatzis I., Morrow N., Lim H.T.: Magnitude and detailed structure of residual oil saturation. Soc. Pet. Eng. J. 23, 311–326 (1983). doi:10.2118/10681-PA

    Google Scholar 

  • Conrad S.H., Wilson J.L., Mason W.R., Peplinski W.J.: Visualization of residual organic liquids trapped in aquifers. Water Resour. Res. 28, 467–478 (1992). doi:10.1029/91WR02054

    Article  Google Scholar 

  • Corapcioglu M.Y., Fedirchuk P.: Glass bead micromodel study of solute transport. J. Contam. Hydrol. 36, 209–230 (1999). doi:10.1016/S0169-7722(98)00145-4

    Article  Google Scholar 

  • Corapcioglu M.Y., Chowdhury S., Roosevelt S.E.: Residual nonaqueous phase liquid dissolution in micromodels. In: Rubin, H., Narkis, N., Carberry, J. (eds) Soil and Aquifer Pollution, Chap. 19, pp. 289–299. Springer-Verlag, Heidelberg, Germany (1998)

    Google Scholar 

  • Corapcioglu M.Y., Cihan A., Drazenovic M.: Rise velocity of an air bubble in porous media: Theoretical studies. Water Resour. Res. 40, 1–9 (2004). doi:10.1029/2003WR002618

    Article  Google Scholar 

  • Corey, A.T.: Mechanics of immiscible fluid in porous media, revised by Water Resources Publications, p. 105. Highlands Ranch, Colorado, USA (1994)

  • Dawe R.A., Mahers E.G., Williams J.K.: Pore scale physical modeling of transport phenomena in porous media. In: Bear, J., Corapcioglu, M.Y. (eds) Advances in Transport Phenomena in Porous Media, pp. 49–76. Martinus Nijhoff, Dordrecht, The Netherlands (1987)

    Google Scholar 

  • Duffield A.R., Ramamurty R.S., Campanelli J.R.: Surfactant enhanced mobilization of mineral oil within porous media. Water Air Soil Pollut. 143, 111–122 (2003). doi:10.1023/A:1022829204883

    Article  Google Scholar 

  • Fontenot M.M., Vigil R.D.: Pore-scale study of nonaqueous phase liquid dissolution in pores media using laser-induced fluorescence. J. Colloid Interface Sci. 247, 481–489 (2002). doi:10.1006/jcis.2001.8158

    Article  Google Scholar 

  • Geller J.T., Hunt J.R.: Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour. Res. 29(4), 833–845 (1993). doi:10.1029/92WR02581

    Article  Google Scholar 

  • Gioia F., Alfani G., Andreutti S., Murena F.: Oil mobility in a saturated water-wetted bed of glass beads. J. Hazard. Mater. B 97, 315–327 (2003). doi:10.1016/S0304-3894(02)00281-9

    Article  Google Scholar 

  • Hatfield K., Stauffer T.B.: Transport in porous media containing residual hydrocarbon. I: Model. J. Environ. Eng. 119, 540–558 (1993). doi:10.1061/(ASCE)0733-9372(1993)119:3(540)

    Article  Google Scholar 

  • Hunt J.R., Sitar N., Udel K.S.: Nonaqueous phase liquid transport and cleanup 1. Analysis of mechanisms. Water Resour. Res. 24, 1247–1258 (1988). doi:10.1029/WR024i008p01247

    Article  Google Scholar 

  • Image-Pro PlusTM: Image Processing System Version 2.0, Media Cybernetics. Silver Spring, MD (1992)

  • Imhoff P.T., Jaffe P.R., Pinder G.F.: An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour. Res. 30(2), 307–320 (1994a). doi:10.1029/93WR02675

    Article  Google Scholar 

  • Imhoff P.T., Jaffe P.R., Pinder G.F.: Correction to “An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media”. Water Resour. Res. 30(10), 2871 (1994b). doi:10.1029/94WR01799

    Article  Google Scholar 

  • Jeong S.W., Corapcioglu M.Y.: A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding. J. Contam. Hydrol. 60, 77–99 (2003a). doi:10.1016/S0169-7722(02)00054-2

    Article  Google Scholar 

  • Jeong S.W., Corapcioglu M.Y.: Physical model analysis of foam-TCE displacement in porous media. AIChE J. 49, 782–788 (2003b). doi:10.1002/aic.690490321

    Article  Google Scholar 

  • Jia C., Shing K., Yortsos Y.C.: Visualization and simulation of NAPL solubilization in pore networks. J. Contam. Hydrol. 35(4), 363–387 (1999). doi:10.1016/S0169-7722(98)00102-8

    Article  Google Scholar 

  • Johns M.L., Gladden L.F.: Magnetic resonance imaging of the dissolution kinetics of octonal in porous media. J. Colloid Interface Sci. 210, 261–270 (1999). doi:10.1006/jcis.1998.5950

    Article  Google Scholar 

  • Johns M.L, : Probing ganglia dissolution and mobilization in a water-saturated porous medium using MRI. J. Colloid Interface Sci. 225, 119–127 (2000). doi:10.1006/jcis.2000.6742

    Article  Google Scholar 

  • Keller A.A., Blunt M.J., Roberts P.V.: Micromodel observation of the role of oil layers in three-phase flow. Transp. Porous Media 26, 277–297 (1997). doi:10.1023/A:1006589611884

    Article  Google Scholar 

  • Kennedy C.A., Lennox W.C.: A pore-scale investigation of mass transport from dissolving DNAPL droplets. J. Contam. Hydrol. 24, 221–246 (1997). doi:10.1016/S0169-7722(96)00011-3

    Article  Google Scholar 

  • Mayer A.S., Miller C.T.: An experimental investigation of pore-scale distributions of nonaqueous phase liquids at residual saturation. Transp. Porous Media 10, 57–80 (1993). doi:10.1007/BF00617511

    Article  Google Scholar 

  • McKellar M., Wardlaw N.C.: A method of making two-dimensional glass micromodels of pore systems. J. Can. Petrol. Technol. 21, 39–41 (1982)

    Google Scholar 

  • Miller C.T., Poirier-McNeill M.M., Mayer A.S.: Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resour. Res. 26(11), 2783–2796 (1990)

    Article  Google Scholar 

  • Nambi I.M., Powers S.E.: Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour. Res. 39(2), 1030 (2003). doi:10.1029/2001WR000667

    Article  Google Scholar 

  • Ng K.M., Davis H.T., Scriven L.E.: Visualization of blob mechanics in flow through porous media. Chem. Eng. Sci. 33, 1009–1017 (1978). doi:10.1016/0009-2509(78)85004-0

    Article  Google Scholar 

  • Pennell K.D., Pore G.A., Abriola L.M.: Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ. Sci. Technol. 30(4), 1328–1335 (1996). doi:10.1021/es9505311

    Article  Google Scholar 

  • Powers S.E., Loureiro C.O., Abriola L.M., Weber W.J. Jr.: Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resour. Res. 27(4), 463–477 (1991). doi:10.1029/91WR00074

    Article  Google Scholar 

  • Powers S.E., Abriola L.M., Weber W.J. Jr.: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates. Water Resour. Res. 28(10), 2691–2705 (1992). doi:10.1029/92WR00984

    Article  Google Scholar 

  • Powers S.E., Abriola L.M., Weber W.J. Jr.: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates. Water Resour. Res. 30(2), 321–332 (1994). doi:10.1029/93WR02923

    Article  Google Scholar 

  • Saripalli K.P., Kim H., Rao P.S.C., Annable M.D.: Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ. Sci. Technol. 31(3), 932–936 (1997). doi:10.1021/es960652g

    Article  Google Scholar 

  • Soll W.E., Celia M.A., Wilson J.L.: Micromodel studies of three-fluid porous media systems: Pore-scale processes relating to capillary pressure-saturation relationship. Water Resour. Res. 29, 2963–2974 (1993). doi:10.1029/93WR00524

    Article  Google Scholar 

  • Tung V.X., Dhir V.K.: A hydrodynamic model for two-phase flow through porous media. Int. J. Multiph. Flow 14, 47–65 (1988). doi:10.1016/0301-9322(88)90033-X

    Article  Google Scholar 

  • Wan J., Wilson J.L.: Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media. Water Resour. Res. 30, 11–23 (1994). doi:10.1029/93WR02403

    Article  Google Scholar 

  • Wardlaw N.C.: The effect of geometry, wettability, viscosity, and interfacial tension on trapping in single pore throat pairs. J. Can. Pet Technol. 21, 21–27 (1982)

    Google Scholar 

  • Wardlaw N.C., McKellar M.: Oil blob populations and mobilization of trapped oil in unconsolidated packs. Can. J. Chem. Eng. 63, 525–532 (1985)

    Article  Google Scholar 

  • Zhang C., Werth C.J., Webb A.G.: A magnetic resonance imaging of dense nonaqueous phase liquid dissolution from angular porous media. Environ. Sci. Technol. 36(15), 3310–3317 (2002). doi:10.1021/es011497v

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yavuz Corapcioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corapcioglu, M.Y., Yoon, S. & Chowdhury, S. Pore-Scale Analysis of NAPL Blob Dissolution and Mobilization in Porous Media. Transp Porous Med 79, 419–442 (2009). https://doi.org/10.1007/s11242-008-9331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9331-8

Keywords

Navigation