Skip to main content
Log in

Cloning, characterization and expression analysis of a brassinosteroids biosynthetic gene VvDET2 in Cabernet Sauvignon (Vitis vinifera L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) play a crucial role in plant growth, development, and adaptation to environmental stress. DEETIOLATED2 (DET2) encodes 5α-reductases which catalyzes a rate-limiting step during the biosynthesis of BRs in plants. However, bioinformatic analysis and quantification of DET2 in grapes are rarely reported. Here, VvDET2 from the leaves of Cabernet Sauvignon (Vitis vinifera L.) was isolated and characterized. The open reading frame of VvDET2 was 774 bp, encoding a peptide of 257 amino acids. The VvDET2-predicted protein has a theoretical molecular mass of 29.69 kDa and an isoelectric point (pI) of 9.49. The phylogenetic analysis revealed that VvDET2 had a close evolutionary relationship with EpDET2 in Echinacea purpurea. The transcription of VvDET2 was detected in roots, leaves, stems, tendrils, and grape berries, as well as the occurrence of endogenous BRs. In fruit, the expression of VvDET2 decreased in both skins and seeds from E-L 31 to E-L 38 stage, while the content of total BRs peaked at E-L 36 stage. In addition, water stress substantially down-regulated the expression of VvDET2 and the content of total BRs in the leaves of grapevines. These results demonstrate that the regulation of grape berries ripeness and water stress response in Cabernet Sauvignon was closely associated with transcript levels of the VvDET2 and the content of total BRs.

Key message

The isolation of VvDET2 in Cabernet Sauvignon (Vitis vinifera L.), the description of bioinformatic analysis and the expression pattern during grape berry development and under drought stress were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All authors have ensured that all data, materials and software support the published claims and comply with field standards.

References

  • Anwar A, Liu YM, Dong RR, Bai LQ, Yu XC, Li YS (2018a) The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res 51:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar A, Bai LQ, Miao L, Liu YM, Li SZ, Yu XC, Li YS (2018b) 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedling. Int J Mol Sci 19:2497

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao SQ, Xu QT, Cao YJ, Qian K, An K, Zhu Y, Zeng HB, Zhao HF, Kuai BK (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    Article  CAS  Google Scholar 

  • Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YT (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69:63–69

    Article  CAS  Google Scholar 

  • Chen YJ, Chen Y, Shi ZJ, Jin YF, Sun HS, Xie FC, Zhang L (2019) Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. Int J Mol Sci 20:1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Article  Google Scholar 

  • Coombe BG (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine R 1:104–110

    Article  Google Scholar 

  • De Bruyne L, Höfte M, De Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7(6):943–959

    Article  PubMed  Google Scholar 

  • Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Muller AH, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166:1912–1927

    Article  PubMed  PubMed Central  Google Scholar 

  • Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S, Li JM, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9:1951–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklestkova J, Szarejko L (2016) Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front Plant Sci 7:1824

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwiga T, Chuckb GS, Fujiokac S, Klempiena A, Weizbauera R, Potlurid DPV, Choee S, Johalf GS, Schulz B (2011) Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA 108:19814–19819

    Article  Google Scholar 

  • He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185–10190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou SS, Niu H, Tao Q, Wang S, Gong Z, Li S, Weng Y, Li Z (2017) A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L). Theor Appl Genet 130:1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Huo W, Li B, Kuang J, He P, Xu Z, Wang J (2018) Functional characterization of the steroid reductase genes GmDET2a and GmDET2b from glycine max. Int J Mol Sci 19:726

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BK, Fujioka S, Takatsuto S, Tsujimoto M, Choe S (2008) Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem Biophys Res Commun 374:614–619

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Nagpal P, Vitart V, Mcmorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li QF, Lu J, Yu JW, Zhang CQ, He JX, Liu QQ (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. BBA-Gene Regul Mech 1861:561–571

    CAS  Google Scholar 

  • Li H, Teng RM, Liu JX, Yang RY, Yang YZ, Lin SJ, Han MH, Liu JY, Zhuang J (2019) Identification and analysis of genes involved in auxin, abscisic acid, gibberellin, and brassinosteroid metabolisms under drought stress in tender shoots of tea plants. DNA Cell Biol 38:1292–1302

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang D, Sun X, Ding T, Lei B, Zhang C (2017) Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids 124:1–17

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y (2007) GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 51:419–430

    Article  CAS  PubMed  Google Scholar 

  • Montoya T, Nomura T, Yokota T, Farrar K, Harrison K, Jones JD, Kaneta T, Kamiya Y, Szekeres M, Bishop GJ (2005) Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J 42:262–269

    Article  CAS  PubMed  Google Scholar 

  • Nolan TM, Vukasinovic N, Liu D, Russinova E, Yin YH (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32:295–318

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Jager CE, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith JJ, Kerchhoffs HJ, Reid JB, Yokota T (2004) Brassinosteroid deficiency due to truncated steroid 5a-reductase causes dwarfism in the lk mutant of Pea. Plant Physiol 135:2220–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in arabidopsis. J Biol Chem 280:17873–17879

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, Yokota T (2007) Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol 143:1680–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287:31551–31560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planas-Riverola A, Gupta A, Betegon-Putze I, Bosch N, Ibanes M, Canno-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146:151894

    Article  Google Scholar 

  • Russell DW, Wilson JD (1994) Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem 63:25–61

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirk WA, Balint P, Tarkowska D, Strnad M, Staden JV, Ordog V (2018) Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. Eur J Phycol 55:273–279

    Article  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang WQ, He K, Zhu JY, He JX, Bai MY, Zhu SW, Oh E, Patil S, Kim TW, Ji HK, Wong WH, Rhee SY, Wang AY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the defificiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Chen ZY, Jiang Y, Duan BB, Xi ZM (2019) Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci Hortic 256:108596

    Article  CAS  Google Scholar 

  • Wei ZY, Li J (2020) Regulation of brassinosteroid homeostasis in higher plants. Front Plant Sci 11:583662

    Article  Google Scholar 

  • Wu WL, Zhang Q, Ervin EH, Yang ZP, Zhang XZ (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen Z, Yu JQ (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191(3):706–720

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Zeng HT, Tang Q, Hua XJ (2010) Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. J Plant Growth Regul 29:44–52

    Article  Google Scholar 

  • Zeng GH, Gao FF, Li C, Li DD, Xi ZM (2022) Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). Plant Physiol Biochem 184:98–111

    Article  CAS  PubMed  Google Scholar 

  • Zheng LW, Zhao CD, Mao JP, Song CH, Ma JJ, Zhang D, Han MY, An N (2018) Genome-wide identification and expression analysis of brassinosteroid biosynthesis and metabolism genes regulating apple tree shoot and lateral root growth. J Plant Physiol 231:68–85

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (Grant No. 2019YFD1000102-11) and China Agriculture Research System for Grape (Grant No. CARS-29-zp-6).

Author information

Authors and Affiliations

Authors

Contributions

ZX conceived and designed the experiments; YJ performed the experiments; JC, GZ and FG analyzed and interpreted the data. All authors contributed to the writing and revision of the final manuscript.

Corresponding author

Correspondence to Zhumei Xi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Maria Margarida Oliveira.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Zeng, G., Gao, F. et al. Cloning, characterization and expression analysis of a brassinosteroids biosynthetic gene VvDET2 in Cabernet Sauvignon (Vitis vinifera L.). Plant Cell Tiss Organ Cult 154, 43–54 (2023). https://doi.org/10.1007/s11240-023-02508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02508-4

Keywords

Navigation