Skip to main content
Log in

Transgenic maize inbred lines expressing high levels of Bacillus thuringiensis vegetative insecticidal protein (Vip3Aa86) offer effective control of maize stem borer (Chilo partellus)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The increasing incidence of field-evolved resistance in Lepidoptera (bollworms) insects towards Bt δ-endotoxins necessitates the need for an alternate strategy to prolong crop resistance. We have investigated the efficacy of Bacillus thuringiensis (Bt) derived toxin, the Vegetative Insecticidal protein Vip3Aa86 to manage maize stem borer in transgenic maize lines. Vip3A proteins do not share any midgut receptors or mechanism of action with any Cry insecticidal proteins and therefore are expected to possess toxicity even in the Bt resistant insects. The transgenic maize inbred lines generated through Agrobacterium-mediated transformation expressing a codon optimized, synthetic vip3Aa86 gene under the influence of the Poly ubiquitin promoter. The T0 progenitor plants were screened initially through GFP reporter gene expression and transgene insertion by specific amplifications that identified four vip3Aa86 transgenic maize lines. Highest vip3Aa86 transcript abundance was observed in the V1 transgenic line while lowest was observed in the VA8 transgenic maize line when subjected to relative mRNA expression analysis. The concentration of Vip3Aa86 protein in T1 transgenic maize lines ranged from 0.94 to 2.24 µg g− 1 leaf fresh weight. The percentage mortality of Chilo partellus was 76.6%, 56.7%, 40% and 53.3% respectively when fed on V1, V10, V12 and VA8 transgenic maize lines of T1 plants, for a period of 72 h in comparison to a control, non-transgenic maize sample. The study concluded that vip3Aa86 insecticidal gene holds great potential against maize stem borer and can be used in gene-pyramiding with Bt crops to prolong the crop resistance.

Key message

The vip3Aa86, a potential alternative to cry toxins for Chilo partellus (borer) resistance in maize and are expected to possess toxicity even in the Bt resistant insects. Integrated methods of controlling insect pests using insecticidal proteins with conventional strategies could provide sustainable solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has no associated data set.

References

  • Abdelkefi-Mesrati L, Boukedi HM, Dammak-Karray T, Jaoua SS, Tounsi S (2011) Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 106: 250–254

  • Adeyinka OS, Tabassum B, Sharif MN, Bhatti MU, Nasir IA, Husnain T (2018) Lag in advance biotechnology approach: a reliable control of maize stem borer insect in Africa. J Plant Protec Res 58(1):8–24

    Google Scholar 

  • Arabjafari KH, Jalali SK (2007) Identification and analysis of host plant resistance in leading maize genotypes against spotted stem borer, Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae). Pak J Biol Sci 10(11):1885–1895. https://doi.org/10.3923/pjbs.2007.1885.1895

    Article  CAS  PubMed  Google Scholar 

  • Ben Hamadou-Charfi D, Boukedi HL, Abdelkefi-Mesrati ST, Jaoua S (2013) Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J Invertebr Pathol 114:139–143

    Article  CAS  PubMed  Google Scholar 

  • Bhatti MU, Riaz S, Toufiq N, Adeyinka OS, Khan A, Yousaf I, Tariq M, Murtaza S, Nasir IA, Tabassum B (2020) The potential and efficacy of Allium sativum leaf lectin (ASAL) against sap-sucking insect pests of transgenic maize. Biologia 75(12):2351–2358. https://doi.org/10.2478/s11756-020-00533-8

    Article  CAS  Google Scholar 

  • Boukedi H, Khedher SB, Triki N, Kamoun F, Saadaoui I, Chakroun M, Tounsi S, Abdelke –Mesrati L (2015) Overproduction of the Bacillus thuringiensis Vip3Aa16 toxin and study of its insecticidal activity against the carob moth Ectomyelois ceratoniae. J Invertebr Pathol 127:127–129

    Article  CAS  PubMed  Google Scholar 

  • Burkness EC, Dively G, Patton T, Morey AC, Hutchison WD (2010) Novel Vip3A Bacillus thuringiensis (bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: implications for resistance management. GM Crops 1(5):337–343. https://doi.org/10.4161/gmcr.1.5.14765

    Article  PubMed  Google Scholar 

  • Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Laxmi Narasu VML, Udayasuriyan V, Rana D (2016) Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res 25:665–678. https://doi.org/10.1007/s11248-016-9954-4

    Article  CAS  PubMed  Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins vip from entomopathogenic. Bact Microbiol Mol Biol Rev 80:2

    Google Scholar 

  • Chen W, Liu C, Lu G, Cheng H, Shen Z, Wu K (2018) Effects of Vip3AcAa + Cry1Ac cotton on midgut tissue in Helicoverpa armigera (Lepidoptera: Noctuidae). J Insect Sci 18(4):13. https://doi.org/10.1093/jisesa/iey075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC (2021) A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J Invertebr Pathol 186:107438

    Article  CAS  PubMed  Google Scholar 

  • Dowd PF, Johnson ET (2016) Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance. J Plant Res 129:13–20

    Article  CAS  PubMed  Google Scholar 

  • Du D, Jin R, Guo J, Zhang F (2019) Infection of embryonic callus with agrobacterium enables high-speed transformation of maize. Int J Mol Sci 20(2):279. https://doi.org/10.3390/ijms20020279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM (2022) Global maize production, consumption and trade: trends and R&D implications. Food Sect. 14:1295–1319. https://doi.org/10.1007/s12571-022-01288-7

    Article  Google Scholar 

  • Escudero IR, Banyuls N, Bel Y, Maeztua M, Escriche B, Munoz D, Caballero P, Ferre J (2014) A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 117:51–55

    Article  Google Scholar 

  • Falak N, Munir H, Faridullah, Din M (2003) Insects pests of maize and their losses. Asian J Plant Sci 2:412–414

    Article  Google Scholar 

  • Farhan Y, Smith JL, Schaafsma AW (2018) Baseline susceptibility of Striacosta albicosta (Lepidoptera: Noctuidae) in Ontario, Canada to Vip3A Bacillus thuringiensis protein. J Econ Entomol 111(1):65–71

  • Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25(10):1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2002) The 5’-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res 30(15):3401–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianessi LP (2013) The potential for Worldwide Crop production increase due to adoption of pesticides rice wheat & maize. Crop Protection Research Institute. Accessed 2 Sept 2017

  • Girón-Calva PS, Twyman RM, Albajes R, Gatehouse AM, Christou P (2020) The impact of environmental stress on Bt crop performance. Trends plant sci 25(3):264–278

  • Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A (2021) Importance of Cry proteins in biotechnology: initially a bioinsecticide, now a vaccine adjuvant. Life 23(10):999

  • He S, Zhi-Hong L, Wei L, Jie Z, Kang-Lai H, Li Z, Min L, Da-Fang H (2014) Developing transgenic maize (Zea mays L.) with insect resistance and glyphosate tolerance by fusion gene transformation. J Integr Agric  https://doi.org/10.1016/S2095-3119(14)60855-8

    Article  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Zhang Y, Chen Z, Wu D, Cai J, Gao X (2020) Structural insights into the insecticidal Vip3A toxin of Bacillus thuringiensis. https://doi.org/10.1101/2020.01.24.918433

  • Li Z, Hansen JL, Liu Y, Zemetra RS, Berger PH (2004) Using real-time PCR to determine transgene copy number in wheat. Plant Mol Biol Rep 22:179–188

  • Liu L, Schepers E, Lum A, Rice J, Yalpani N, Gerber R, Jiménez-Juárez N, Haile F et al (2019) Identification and evaluations of novel insecticidal proteins from plants of the Class polypodiopsida for crop protection against key lepidopteran pests. Toxins 11(7):383. https://doi.org/10.3390/toxins11070383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(– Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nabeel M, Javed H, Mukhtar T (2018) Occurrence of Chilo partellus on maize in major maize growing areas of Punjab, Pakistan. Pak J Zool 50(1):317–323. https://doi.org/10.17582/journal.pjz/2018.50.1.317.323

    Article  Google Scholar 

  • Nong X, Chen FZ, Yang YJ, Liang Z, Huang BL, Li Y, Liu TF, Yu H (2015) Aphicidal activity of an ageraphorone extract from eupatorium adenophorum against Pseudoregma bambucicola (Homoptera: Aphididae, Takahashi). J Insect Sci 15(1):81. https://doi.org/10.1093/jisesa/iev060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15. https://doi.org/10.1007/BF02772108

    Article  CAS  Google Scholar 

  • Riaz S, Nasir IA, Bhatti MU, Adeyinka OS, Toufiq N, Yousaf I, Tabassum B (2020) Resistance to Chilo infuscatellus (Lepidoptera: Pyraloidea) in transgenic lines of sugarcane expressing Bacillus thuringiensis derived Vip3A protein. Mol Biol Rep 47(4):2649–2658. https://doi.org/10.1007/s11033-020-05355-0

    Article  CAS  PubMed  Google Scholar 

  • Raldugina GN, Hoang TZ, Ngoc HB, Karpichev IV (2021) An increased proportion of transgenic plants in the progeny of rapeseed (Brassica napus L.) transformants. Vavilovskii Zh Genet Sel 25(2):147–156. https://doi.org/10.18699/VJ21.018

    Article  CAS  Google Scholar 

  • Raybould A, Vlachos D (2011) Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Res 20:599–611. https://doi.org/10.1007/s11248-010-9442-1

    Article  CAS  PubMed  Google Scholar 

  • Sellami S, Cherif M, Abdelkefi-Mesrati L, Tounsi S, Jamoussi K (2015) Toxicity, activation process, and histopathological effect of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 on Tuta absoluta. Appl Biochem Biotechnol 175:1992. https://doi.org/10.1007/s12010-014-1393-1

    Article  CAS  PubMed  Google Scholar 

  • Sheikh AA, Wani MA, Bano P, Nabi SU, Bhat TA, Bhat MA, Dar MS (2017) An overview on resistance of insect pests against Bt crops. J Entomol Zool Stud 5(1):941–948

    Google Scholar 

  • Streatfield SJ, Magallanes-Lundback ME, Beifuss KK, Brooks CA, Harkey RL, Love RT, Bray J, Howard JA, Jilka JM, Hood EE (2004) Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics. Transgenic Res 13(4):299–312

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Bre vault T, Carrie’re Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521. https://doi.org/10.1038/nbt.2597

    Article  CAS  PubMed  Google Scholar 

  • Taylor AP (2017) Insects are increasingly evolving resistance to genetically modified crops. The Scientist Magazine. https://www.the-scientist.com/the-nutshell/insects-are-increasingly-evolving-resistance-to-genetically-modified-crops-30750

  • Vajhala CSK, Sadumpati VK, Nunna HR, Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing Allium sativum Agglutinin (ASAL) for enhanced resistance against Major Sap-Sucking Pests. PLoS ONE 8(9):e72542. https://doi.org/10.1371/journal.pone.0072542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viktorov AG (2015) Can efficient insecticidal plants be created or the evolution of phytophage resistance to commercial transgenic Bt plants. Russ J Plant Physiol 621:14–22

  • Wang Z, Fang L, Zhou Z, Pacheco S, Gómez I, Song F, Soberón M, Zhang J, Bravo A (2018) Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis). J Biol Chem 293:11447–11458. https://doi.org/10.1074/jbc.RA118.00349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of agrobacterium using the freeze-thaw method. CSH protocols (7):pdb-rot4666

  • Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Res 20:963–973. https://doi.org/10.1007/s11248-011-9483-0

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Cheng J, Lin H, Lin C, Gao J, Shen Z (2018) Characterization of transgenic rice expressing fusion protein Cry1Ab/ Vip3A for insect resistance. Sci Rep 8:15788. https://doi.org/10.1038/s41598-018-34104-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Malepszy S (2003) The transgenes are expressed with different level in plants. Biotechnol 2(61):236–260

    Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3Aa lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63(2):532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yin X, Yang A, Li G, Zhang J (2005) Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144:11–22. https://doi.org/10.1007/s10681-005-4560-1

    Article  CAS  Google Scholar 

  • Zhang Y, Liang GM, Zhang LL, Wei JZ (2012) Pathological changes in midgut tissues of larvae of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), after feeding Vip3Aa protein. Acta Entomol Sinica 55:869–876

    CAS  Google Scholar 

  • Zhu F, Zhou Y-K, Ji Z-L, Chen X-R (2018) The plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front. Plant Sci 9:146. https://doi.org/10.3389/fpls.2018.00146

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Abdul Munim Farooq for providing seed of maize inbred lines. The authors also extend thanks to Higher Education Commission of Pakistan for International Research Support Initiative Program (IRSIP) Fellowship to Muhammad Umar Bhatti.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MUB: investigation. BT: supervision, writing—review & editing, data curation. CB: Advisor at School of Biosciences, Cardiff University during IRSIP fellowship. AK: writing—original draft. UQ: validation. EA: investigation, bioassay. RK: investigation, bioassay. AMF: investigation. MT: validation. HA: data curation.

Corresponding author

Correspondence to Bushra Tabassum.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Shabir Hussain Wani.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 250.4 kb)

Supplementary material 2 (DOCX 16.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.U., Tabassum, B., Berry, C. et al. Transgenic maize inbred lines expressing high levels of Bacillus thuringiensis vegetative insecticidal protein (Vip3Aa86) offer effective control of maize stem borer (Chilo partellus). Plant Cell Tiss Organ Cult 153, 417–427 (2023). https://doi.org/10.1007/s11240-023-02483-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02483-w

Keywords

Navigation