Skip to main content
Log in

Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study represents an optimized protocol for cell line culture of Matricaria chamomilla and the impact of clino-rotation on cell division, cell growth, and antioxidant enzyme activities for the first time. The cell suspension was transferred in the solid MS medium supplied with 2, 4-D, and KIN. Then the calli produced from a cell line were selected for callus subculture and clino-rotation treatment for 7 days by a 2D-clinostat. A significant rise of fresh and dry weights, cell division, total soluble sugar, reducing sugar, and starch contents were detected under clino-rotation. Protein content approximately unchanged in microgravity-treated calli. Antioxidant enzymes activities, such as peroxidase, catalase (CAT), and superoxide dismutase were elevated in calli exposed to microgravity. CAT activity showed a more than three-fold increase than that of control. According to native polyacrylamide gel electrophoresis, all the antioxidant enzymes isoforms were stronger in clino-rotated calli than that of the untreated control. Microgravity also stimulated H2O2 production and markedly adjusted lipid peroxidation in calli exposed to clino-rotation. These findings suggest that clino-rotation with stimulation of carbohydrate accumulation and antioxidant enzymes mitigates oxidative stress and improves growth and cell division.

Key message

The isolation of M. chamomilla cell line with high growth was conducted to study the impact of clino-rotation on some cellular and antioxidative enzyme responses. Clino-rotation stimulated the cell division and growth by induction of antioxidant enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol 95:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Method enzymol. Elsevier, pp 121–126

    Google Scholar 

  • Amor NB, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899

    Article  CAS  Google Scholar 

  • Arena C, De Micco V, Macaeva E, Quintens R (2014) Space radiation effects on plant and mammalian cells. Acta Astronaut 104:419–431

    Article  CAS  Google Scholar 

  • Aubry-Hivet D, Nziengui H, Rapp K, Oliveira O, Paponov IA, Li Y, Hauslage J, Vagt N, Braun M, Ditengou FA, Dovzhenko A, Palme K (2014) Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biol 16:129–141

    Article  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beemster GT, De Vusser K, De Tavernier E, De Bock K, Inzé D (2002) Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol 129:854–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucheron-Dubuisson E, Manzano AI, Le Disquet I, Matía I, Sáez-Vasquez J, Van Loon JJ, Herranz R, Carnero-Diaz E, Medina FJ (2016) Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. J Plant Physiol 207:30–41

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brykov V (2011) Clinorotation affects the ultrastructure of pea root mitochondria. Microgravity Sci Tec 23:215–219

    Article  Google Scholar 

  • Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chen Y, Lu J, Li H, Sun Q, Zhao Y, Su L, Liu M (2015) Effects of spaceflight and simulated microgravity on cell sub-microstructure and antioxidant enzyme activity in tomato. Sci Chain Technol Sci 58:338–345

    Article  Google Scholar 

  • Choi YS, Jung MY, Soh WY, Han KS, Yeo UD (2011) Changes of antioxidant enzymes in Stevia Plants under clinorotation, shaking, and low temperature stresses. Korean J Plant Res 24:343–350

    Article  Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulinaplatensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  PubMed  Google Scholar 

  • Clement G, Slenzka K (2006) Fundamentals of space biology: research on cells, animals, and plants in space. Springer Sci Business Media, p 18

    Book  Google Scholar 

  • Cockcroft CE, den Boer BG, Healy JS, Murray JA (2000) Cyclin D control of growth rate in plants. Nature 405:575–579

    Article  CAS  PubMed  Google Scholar 

  • Dauzart AJ, Vandenbrink JP, Kiss JZ (2016) The effects of clinorotation on the host plant, Medicagotruncatula, and its microbial symbionts. Front Astron Space Sci 3:3

    Article  Google Scholar 

  • Desiderio A, Salzano AM, Scaloni A, Massa S, Pimpinella M, De Coste V, Pioli C, Nardi L, Benvenuto E, Villani ME (2019) Effects of simulated space radiations on the tomato root proteome. Front Plant Sci 10:1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietlein I, Doi T, Haubold H, Hauslage J, Hemmersbach H, Hoson T, Sarah Lammens S, Li Y, Long M, Van Loon JJWA, Niu A, Takahashi H, Ochiai M, Osman A, Steffens H (2013) Teacher’s guide to plant experiments in microgravity. Human Space Technology Initiative, United Nations, New York

    Google Scholar 

  • Ferl RJ, Koh J, Denison F, Paul AL (2015) Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 15(1):32–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Gaspar T, Penel C, Thorpe T, Greppin H (1982) A survey of their biochemical and physiological roles in higher plants. Peroxidases. Univ. of Geneva, Geneva, pp 1970–1980

    Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schöberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEBJ 16:604–606

    Article  CAS  Google Scholar 

  • Hall J, Flowers T (1973) The effect of salt on protein synthesis in the halophyte Suaeda maritima. Planta 110:361–368

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1989) Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br J Exp Pathol 70:737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanpour H, Niknam V (2020) Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-020-01885-4

    Article  Google Scholar 

  • Hassanpour H, Niknam V, Haddadi BH (2017) High-frequency vibration improve callus growth via antioxidant enzymes induction in Hyoscyamus kurdicus. Plant Cell Tissue Organ Cult 128(1):1–11. https://doi.org/10.1007/s11240-016-1103-5

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Marin E, Martínez A (2012) Carbohydrates and their free radical scavenging capability: a theoretical study. J Phys Chem B 116:9668–9675

    Article  CAS  PubMed  Google Scholar 

  • Herranz R, Medina FJ (2014) Cell proliferation and plant development under novel altered gravity environments. Plant Biol 16:23–30

    Article  PubMed  Google Scholar 

  • Hosseini SM, Hasanloo T, Mohammadi S (2015) Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turk J Agric For 39:413–420

    Article  CAS  Google Scholar 

  • Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Johnson SP, Tibbitts TW (1968) The liminal angle of a plagiogeotropic organ under weightlessness. Bioscience 18:655–661

    Article  CAS  Google Scholar 

  • Kamal KY, Herranz R, Van Loon JJ, Medina FJ (2018) Simulated microgravity, Mars gravity, and 2 g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci Rep 8:1–16

    Article  Google Scholar 

  • Kiss JZ (2014) Plant biology in reduced gravity on the Moon and Mars. Plant Biol 16:12–17. https://doi.org/10.1111/plb.12031

    Article  PubMed  Google Scholar 

  • Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, Van Loon JJWA (2019) Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci 10:1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozeko L, Kordyum E (2006) The stress protein level under clinorotation in context of the seedling developmental program and the stress response. Microgravity Sci Technol 18:254

    Article  CAS  Google Scholar 

  • Kraft TF, Van Loon JJ, Kiss JZ (2000) Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 211(3):415–422

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lang T, Van Loon JJWA, Bloomfield S, Vico L, Chopard A, Rittweger J, Kyparos A, Blottner D, Vuori I, Gerzer R, Cavanagh PR (2017) Towards human exploration of space: the theseus review series on muscle and bone research priorities. npj Microgravity 3(1):1–8

    Article  Google Scholar 

  • Link BM, Busse JS, Stankovic B (2014) Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity. Astrobiology 14:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas EV, Ogata G, Finkel MH (1979) Salt-induced inhibition of phosphate transport and release of membrane proteins from barley roots. Plant Physiol 64:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzano AI, Larkin OJ, Dijkstra CE, Anthony P, Davey MR, Eaves L, Hill RJ, Herranz R, Medina FJ (2013) Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biol 13(1):124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matia I, van Loon JW, Carnero-Díaz E, Marco R, Medina FJ (2009) Seed germination and seedling growth under simulated microgravity causes alterations in plant cell proliferation and ribosome biogenesis. Microgravity Sci Tec 21:169

    Article  CAS  Google Scholar 

  • Matía I, González-Camacho F, Herranz R, Kiss JZ, Gasset G, van Loon JJ, Marco R, Medina FJ (2010) Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J Plant Physiol 167:184–193

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Murray JA (2002) Synchronous Arabidopsis suspension cultures for analysis of cell cycle gene activity. Plant J 30(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Merati MJ, Niknam V, Hassanpour H, Mirmasoumi M (2016) Comparative effects of salt stress on growth and antioxidative responses in different organs of pennyroyal (Mentha pulegium L.). J Plant Res 28(5):1097–1107

    Google Scholar 

  • Mishra P, Prakash V (2010) Response of non-enzymatic antioxidants to zinc Induced stress at different pH in Glycine max L. cv. Merrill Acad J Plant Sci 3:1–10

    Google Scholar 

  • Mortley DG, Bonsi CK, Hill WA, Morris CE, Williams CS, Davis CF, Williams JW, Levine LH, Petersen BV, Wheeler RM (2008) Influence of microgravity environment on root growth, soluble sugars, and starch concentration of sweetpotato stem cuttings. J Am Soc Hortic Sci 133:327–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agric Res 54:627–635

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nace GW (1983) Gravity and positional homeostasis of the cell. Adv Space Res 3(9):159–168

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Ogawa Y, Suzuki T, Kondo N (2019) Enhanced antioxidant activity in Mung Bean seedlings grown under slow clinorotation. Microgravity Sci Technol 31:395–401

    Article  Google Scholar 

  • Nomura T, Kono Y, Akazawa T (1969) Enzymic mechanism of starch breakdown in germinating rice seeds II. Scutellum as the site of sucrose synthesis. Plant Physiol 44(5):765–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol 30:233–245

    CAS  PubMed  Google Scholar 

  • Paul AL, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ (2011) Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology 11:743–758

    Article  CAS  PubMed  Google Scholar 

  • Sebai H, Jabri M-A, Souli A, Rtibi K, Selmi S, Tebourbi O, El-Benna J, Sakly M (2014) Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnophar 152:327–332

    Article  CAS  Google Scholar 

  • Shabrangi A, Hassanpour H, Majd A, Sheidai M (2015) Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia 68(4):1–8. https://doi.org/10.1080/00087114.2015.1109920

    Article  Google Scholar 

  • Silva N, Barbosa L, Seito L, Junior AF (2012) Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Prod Res 26:1510–1514. https://doi.org/10.1080/14786419.2011.564582

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Ghanati F, Hajebrahimi Z (2019) The role of phenolic compounds in growth improvement of cultured tobacco cells after exposure to 2-D clinorotation. Plant Physiol 9:2921–2929

    Google Scholar 

  • Stutte G, Monje O, Hatfield R, Paul AL, Ferl R, Simone C (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224:1038–1049

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto M, Youko Oono Y, Matsumoto GO, T, Yazawa T, Margarita A, Levinskikh MA, Sychev VN, Bingham GE, Wheeler R and Hummerick M, (2014) Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol 14:4–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W, Messing J (2012) Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol 12:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Zheng HQ, Sha W, Zeng R, Xia QC (2006) A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. J Exp Bot 57:827–835

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yemm E, Willis A (1956) The respiration of barley plants IX. The metabolism of roots during the assimilation of nitrogen. New Phytol 55:229–252

    Article  CAS  Google Scholar 

  • Zhao MG, Zhao X, Wu YX, Zhang LX (2007) Enhanced sensitivity to oxidative stress in Arabidopsis nitric oxide synthesis mutant. J Plant Physiol 164:737–745

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this study was provided by Aerospace Research Institute, Ministry of Science Research and Technology of Iran. The authors thank Ali Darvishi to build the clinostat device.

Author information

Authors and Affiliations

Authors

Contributions

HH designed, performed the experiments and supervised the whole work. MG analyzed the data. Both authors help to write and revised the manuscript.

Corresponding author

Correspondence to Halimeh Hassanpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Christophe Hano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, H., Ghanbarzadeh, M. Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell Tiss Organ Cult 146, 215–224 (2021). https://doi.org/10.1007/s11240-021-02060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02060-z

Keywords

Navigation