Skip to main content
Log in

Development of an efficient protoplast isolation and transfection system for castor bean (Ricinus communis L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Castor bean is an oil crop plant (Euphorbiaceae) found across the tropical, subtropical, and temperate regions. Despite its important oil properties and cultivation in a wide range of environments, the molecular mechanisms of castor’s adaptation and metabolism have not been fully clarified due to difficulties in genetic modification approaches. The protoplasts of several other plant species have been used as versatile cell-based model systems to elucidate the biological functions of genes and proteins. Here, we report an optimized protocol for protoplast isolation from the leaves and cotyledons of castor bean. The main parameters evaluated to achieve the maximum protoplast yield were the application of a cell wall-degrading enzyme solution, the osmotic pressure of the enzymolysis solution, and the enzymolysis time. Transient expression and the main influencing factors were validated by fluorescence microscopy of castor protoplasts. Our results suggest that castor protoplasts can be used as a productive cell-based system to explore the mechanisms involved in the molecular, biochemical, and functional characterization of castor bean genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambastha V, Chauhan G, Tiwari BS, Tripathy BC (2020) Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. Protoplasma 257:841–851

    CAS  Google Scholar 

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. JAMA 294(18):2342–2351

    CAS  Google Scholar 

  • Burris KP, Dlugosz EM, Collins AG, Stewart CN, Lenaghan SC (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 35(3):693–704

    CAS  Google Scholar 

  • Cao J, Yao D, Lin F, Jiang M (2014) Peg-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant 36(5):1271–1281

    CAS  Google Scholar 

  • Cha OK, Lee J, Lee HS, Lee H (2019) Optimized protoplast isolation and establishment of transient gene expression system for the Antarctic flowering plant Colobanthus quitensis (Kunth) Bartl. PCTOC 138(3):603–607

    CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951

    CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127(3):579–589

    CAS  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187(4741):962–963

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23(2):131–171

    CAS  Google Scholar 

  • Davis HR, Maddison AL, Phillips DW, Jones HD (2020) Genetic transformation of protoplasts isolated from leaves of Lolium temulentum and Lolium perenne. In: Cereal genomics. Springer, Berlin, pp 199–205

  • Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W (2006) Two-hybrid protein–protein interaction analysis in arabidopsis protoplasts: establishment of a heterodimerization map of group c and group s bzip transcription factors. Plant J 46(5):890–900

    CAS  Google Scholar 

  • Falasca SL, Ulberich AC, Ulberich E (2012) Developing an agro-climatic zoning model to determine potential production areas for castor bean (Ricinus communis L.). Ind Crops Prod 40:185–191

    Google Scholar 

  • Feng L, Li G, He Z, Han W, Sun J, Huang F, Di J, Chen Y (2019) The arf, gh3, and aux/iaa gene families in castor bean (Ricinus communis L.): genome-wide identification and expression profiles in high-stalk and dwarf strains. Ind Crops Prod 141:111804

    CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80(15):4803–4807

    CAS  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci 82(17):5824–5828

    CAS  Google Scholar 

  • Guo Y, Song X, Zhao S, Lv J, Lu M (2015) A transient gene expression system in Populous euphratica oliv. protoplasts prepared from suspension cultured cells. Acta Physiol Plant 37(8):160

    Google Scholar 

  • Halek F, Delavari A, Kavousi-rahim A (2013) Production of biodiesel as a renewable energy source from castor oil. Clean Technol Environ Policy 15(6):1063–1068

    CAS  Google Scholar 

  • Huang H, Wang Z, Cheng J, ZhaoW Li X, Wang H, Zhang Z, Sui X (2013) An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Sci Hortic 150:206–212

    CAS  Google Scholar 

  • Huo A, Chen Z, Wang P, Yang L, Wang G, Wang D, Liao S, Cheng T, Chen J, Shi J (2017) Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells. PLoS ONE 12(3):e0172475

    Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413(6854):383–389

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of crispr/cas9/sgrna-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucl Acids Res 41(20):e188

    CAS  Google Scholar 

  • Jung H, Yan J, Zhai Z, Vatamaniuk OK (2015) Gene functional analysis using protoplast transient assays. In: Plant functional genomics. Springer, Berlin, pp 433–452

  • Kanofsky K, Riggers J, Staar M, Strauch CJ, Arndt LC, Hehl R (2019) A strong nf-kb p65 responsive cis-regulatory sequence from Arabidopsis thaliana interacts with wrky40. Plant Cell Rep 38(9):1139–1150

    CAS  Google Scholar 

  • Krens F, Molendijk L, Wullems G, Schilperoort R (1982) In vitro transformation of plant protoplasts with ti-plasmid dna. Nature 296(5852):72–74

    CAS  Google Scholar 

  • Larkin P (1976) Purification and viability determinations of plant protoplasts. Planta 128(3):213–216

    CAS  Google Scholar 

  • Liang Z, Zong Y, Gao C (2016) An efficient targeted mutagenesis system using crispr/cas in monocotyledons. Curr Protoc Plant Biol 1(2):329–344

    CAS  Google Scholar 

  • Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HCW, Zhang Y, Zhang R et al (2018) Application of protoplast technology to crispr/cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16(7):1295–1310

    CAS  Google Scholar 

  • Liu Y, Xue Y, Tang J, Chen J, Chen M (2019) Efficient mesophyll protoplast isolation and development of a transient expression system for castor-oil plant (ricinus communis L.). Biol Futura 70(1):8–15

    CAS  Google Scholar 

  • Luehrsen KR, De Wet JR, Walbot V (1995) Transient expression analysis in plants using firefly luciferase reporter gene. In: Recombinant DNA methodology II. Elsevier, Amsterdam, pp 139–156

  • Malathi B, Ramesh S, Rao KV, Reddy VD (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147(3):441–449

    CAS  Google Scholar 

  • McKeon TA, Chen GQ (2003) Transformation of ricinus communis, the castor plant. US Patent 6,620,986

  • Nicolia A, Proux-Wéra E, Åhman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient talen expression in protoplasts. J Biotechnol 204:17–24

    CAS  Google Scholar 

  • Nishimura M, Beevers H (1978) Isolation of intact plastids from protoplasts from castor bean endosperm. Plant Physiol 62(1):40–43

    CAS  Google Scholar 

  • Niwa Y (2003) A synthetic green fluorescent protein gene for plant biotechnology. Plant Biotechnol 20(1):1–11

    CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Biores Technol 97(9):1086–1091

    CAS  Google Scholar 

  • Page MT, Parry MA, Carmo-Silva E (2019) A high-throughput transient expression system for rice. Plant, Cell Environ 42(7):2057–2064

    CAS  Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of sbnhx1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. PCTOC 122(2):477–490

    CAS  Google Scholar 

  • Sheen J (1993) Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J 12(9):3497–3505

    CAS  Google Scholar 

  • Sheen J (1995) Methods for mesophyll and bundle sheath cell separation. In: Methods in cell biology, vol 49. Elsevier, Amsterdam, pp 305–314

  • Sheen J (2001) Signal transduction in maize and arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475

    CAS  Google Scholar 

  • Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ (2016) Site-directed mutagenesis in petunia_hybrida protoplast system using direct delivery of purified recombinant cas9 ribonucleoproteins. Plant Cell Rep 35(7):1535–1544

    CAS  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23(12):803–810

    CAS  Google Scholar 

  • Sujatha M, Reddy TP, Mahasi M (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26(5):424–435

    CAS  Google Scholar 

  • Sultana MS, Frazier TP, Millwood RJ, Lenaghan SC, Stewart CN (2019) Development and validation of a novel and robust cell culture system in soybean (glycine max (l.) merr.) for promoter screening. Plant Cell Rep 38(10):1329–1345

    CAS  Google Scholar 

  • Tudses N, Premjet S, Premjet D et al (2014) Optimal conditions for high-yield protoplast isolations of Jatropha curcas L. and Ricinus communis L. Am Eur J Agric Environ Sci 14:221–230

    Google Scholar 

  • Wenck A, Marton L (1995) Large-scale protoplast isolation and regeneration of Arabidopsis thaliana. Biotechniques 18(4):640–643

    CAS  Google Scholar 

  • Wu F, Hanzawa Y (2018) A simple method for isolation of soybean protoplasts and application to transient gene expression analyses. JoVE 131:e57258

    Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565

    CAS  Google Scholar 

  • Zhai Z, Hi Jung, Vatamaniuk OK (2009a) Isolation of protoplasts from tissues of 14-day-old seedlings of arabidopsis thaliana. JoVE 30:e1149

    Google Scholar 

  • Zhai Z, Sooksa-nguan T, Vatamaniuk OK (2009b) Establishing rna interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149(2):642–652

    CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D et al (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30

    CAS  Google Scholar 

  • Zürcher E, Liu J, di Donato M, Geisler M, Müller B (2016) Plant development regulated by cytokinin sinks. Science 353:1027–1030

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 31460353), the Natural Science Foundation of Inner Mongolia (Grant Nos. 2017MS0340), and the Natural Scientific Foundation of Inner Mongolia University for Nationalities (Grant Nos. NMDGP17102). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LB and YC carried out the experimental design. LB, JS, GZ, RC, and WQ performed the experiments. KL contributed reagents and analytical tools. AM and YC analysed the data. BL wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yongsheng Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Maria Margarida Oliveira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Cheng, Y., She, J. et al. Development of an efficient protoplast isolation and transfection system for castor bean (Ricinus communis L.). Plant Cell Tiss Organ Cult 143, 457–464 (2020). https://doi.org/10.1007/s11240-020-01932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01932-0

Keywords

Navigation