Skip to main content
Log in

Glandular trichome-specific expression of alcohol dehydrogenase 1 (ADH1) using a promoter-GUS fusion in Artemisia annua L.

Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Artemisinin, isolated from Artemisia annua L., is widely known as a functional anti-malaria drug. Due to the low content of artemisinin in A. annua plants, great efforts have been made to determine the artemisinin biosynthetic pathway by genetic engineering. ADH1, encoding an alcohol dehydrogenase, was cloned from the glandular secretory trichomes (GSTs) in A. annua. The gene expression analysis showed that ADH1 was predominately expressed in buds and young leaves, and the expression of ADH1 was the highest in the youngest leaves. To further investigate the expression pattern of ADH1 in A. annua, a 1070-bp promoter region of ADH1 was cloned. We found 14 putative cis-elements were presented in the ADH1 promoter sequence, indicating that ADH1 is complexly regulated. The ADH1 promoter sequence was fused to the β-glucuronidase reporter gene (GUS) and introduced into A. annua plants. GUS signals were only found in the glandular secretory trichomes of young tissues in transgenic A. annua plants. Besides, the treatment of A. annua seedlings with 100 μM methyl jasmonate (MeJA) and 100 μM abscisic acid (ABA), respectively, increased the ADH1 transcript levels. The dual luciferase (dual-LUC) assay demonstrated that the reported transcription factors, MYC2 and ERF1, activated the expression of ADH1 in vivo. Our study shows that ADH1 gene is exclusively expressed in the glandular secretory trichomes of young tissues of A. annua, it implies that the promoter of ADH1 gene could be used in engineering of A. annua for increasing artemisinin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abdin MZ, Israr M, Rehman RU, Jain SK (2003) Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med 69:289–299

    Article  CAS  PubMed  Google Scholar 

  • Alam P, Abdin MZ (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928

    Article  CAS  PubMed  Google Scholar 

  • Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ (2010) Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant Physiol 154:958–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banyai W, Kirdmanee C, Mii M, Supaibulwatana K (2010) Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss Org Cult 103:255–265

    Article  CAS  Google Scholar 

  • Brown GD, Sy LK (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159

    Article  CAS  Google Scholar 

  • Ferreira JFS, Janick J (1996) Distribution of artemisinin in Artemisia annua. In: Janick J (ed) Progress in new crops. ASHS, Arlington, pp 579–584

    Google Scholar 

  • Fütterer J, Gisel A, Iglesias V, Klöti A, Kost B, Mittelsten Scheid O, Neuhaus G, Neuhaus-Url G, Schrott M, Shillito R, Spangenberg G, Wang ZY (1995) Standard molecular techniques for the analysis of transgenic plants. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, Berlin, pp 215–263

    Chapter  Google Scholar 

  • Han J, Wang H, Lundgren A, Brodelius PE (2014) Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants. Phytochemistry 102:89–96

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plant. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WM, Lu X, Qiu B, Zhang FY, Shen QY, Lv ZY, Fu XQ, Yan TX, Gao ED, Zhu MM, Chen LX, Zhang L, Wang GF, Sun XF, Tang KX (2014) Molecular cloning and characterization of a trichome-specific promoter of artemisinic aldehyde Δ11 (13) reductase (DBR2) in Artemisia annua. Plant Mol Biol Rep 32:82–91

    Article  CAS  Google Scholar 

  • Jing FY, Zhang L, Li MY, Tang YL, Wang YL, Wang YY, Wang Q, Pan QF, Wang GF, Tang KX (2009) Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 64:319–323

    Article  CAS  Google Scholar 

  • Kim J, Kim HY (2006) Molecular characterization of a bHLH transcription factor involved in Arabidopsis abscisic acid-mediated response. BBA Gene Struct Exp 1759:191–194

    Article  CAS  Google Scholar 

  • Liu WH, Zhao TF, Wang HY, Zeng JL, Xiang LE, Zhu SQ, Chen M, Lan XZ, Liu XQ, Liao ZH (2015) Reference gene selection in Artemisia annua L., a plant species producing anti-malarial artemisinin. Plant Cell Tiss Org Cult 121:141–152

    Article  Google Scholar 

  • Liu M, Shi P, Fu XQ, Brodelius PE, Shen Q, Jiang WM, He Q (2016) Characterization of a trichome-specific promoter of the aldehyde dehydrogenase 1 (ALDH1) gene in Artemisia annua. Plant Cell Tiss Org Cult 126:469–480

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhang L, Zhang FY, Jiang WM, Shen Q, Zhang LD, Lv ZY, Wang GF, Tang KX (2013a) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Shen Q, Zhang L, Zhang FY, Jiang WM, Lv ZY, Yan TX, Fu XQ, Wang GF, Tang KX (2013b) Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Ind Crop Prod 49:380–385

    Article  CAS  Google Scholar 

  • Lu X, Jiang WM, Zhang L, Zhang F, Zhang FY, Shen Q, Wang GF, Tang KX (2013c) AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. Plos One 8(2):e57657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Lian HL, He SB, Li L, Jia KP, Yang HQ (2014) COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell 26:2441–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma DM, Pu GB, Lei CY, Ma LQ, Wang HH, Guo YW, Chen JL, Du ZG, Wang H, Li GF, Ye HC, Liu BY (2009a) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50(12):2146–2161

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Wang H, Lu X, Wang H, Xu G, Liu B (2009b) Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 5:497–506

    Article  CAS  Google Scholar 

  • Miyamoto K, Shimizu T, Lin FQ, Sainsbury F, Thuenemann E, Lomonossoff G, Nojiri H, Yamane H, Okada K (2012) Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. J Plant Phsiol 169:621–627

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mutabingwa TK (2005) Artemisinin-based combination therapies (ACTS): best hope for malaria treatment but inaccessible to the needy! Acta Trop 95:305–315

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT, Arsenault PR, Weathers PJ (2011) Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L.. In Vitro Cell Dev Biol Plant 47:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqba T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Lu X, Yan TX, Fu XQ, Lv ZY, Zhang FY, Pan QF, Wang GF, Sun XF, Tang KX (2016) The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Fu XQ, Liu M, Shen Q, Jiang WM, Li L, Sun XF, Tang KX (2017) Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell Tiss Org Cult. doi:10.1007/s11240-017-1173-z

    Google Scholar 

  • Sy LK, Brown GD (2002) The mechanism of the spontaneous autoxidation of dihydroartemisinic acid. Tetrahedron 58:897–908

    Article  CAS  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642

    Article  CAS  Google Scholar 

  • Toledoortiz G, Hqu E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe DC (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Olofsson L, Lundgren A, Brodelius PE (2011) Trichome-specific expression of amorpha-4,11-Diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L., as reported by a promoter-GUS fusion. Am J Plant Sci 2:619–628

    Article  CAS  Google Scholar 

  • Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE (2013) Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Plant Mol Biol 81(1–2):119–138

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2016) World malaria report 2015. WHO, Brussels

    Google Scholar 

  • Wu W, Yuan M, Zhang Q, Zhu YM, Yong L, Wang W, Qi Y, Guo DJ (2011) Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua. Planta Med 77:1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJH, Ross ARS, Covello PS (2008) The molecular cloning of artemisinic aldehyde ∆11 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508

    Article  CAS  PubMed  Google Scholar 

  • Zhang FY, Fu XQ, Lv ZY, Lu X, Shen Q, Zhang L, Zhu MM, Wang GF, Sun XF, Liao ZH, Tang KX (2015) A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 8:163–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the China National Transgenic Plant Research and Commercialization Project (Grant No. 2016ZX08002-001), China National High-Tech ‘‘863’’ Program (Grant No. 2011AA100605), the Shanghai Key Discipline Cultivation and Construction Project (Horticulture), and the Shanghai Jiao Tong University Agri-Engineering Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Fu, X., Shi, P. et al. Glandular trichome-specific expression of alcohol dehydrogenase 1 (ADH1) using a promoter-GUS fusion in Artemisia annua L.. Plant Cell Tiss Organ Cult 130, 61–72 (2017). https://doi.org/10.1007/s11240-017-1204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1204-9

Keywords

Navigation