Skip to main content
Log in

Interactive effects of melatonin and light on growth parameters and biochemical markers in adventitious roots of Withania somnifera L.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Light plays a pertinent role in plant photo-morphogenesis and it is believed to have an impact on the melatonin-induced physiological functions. In the current study, different light regimes were employed with varying levels of melatonin, either singly or in combination with auxins for the growth and development of adventitious roots in Withania somnifera L. It was observed that 600 µM melatonin favored maximum adventitious root induction frequency (58 %) in cultures incubated under continuous dark conditions. However, adequate root growth (number and length of roots) was observed under 16 h light/8 h dark at 600 µM melatonin. Nevertheless, the interactive effect of light and melatonin was found stimulating for profound production of commercially important secondary metabolites. Correlation among growth parameters and biochemical markers was also observed in the current report. Data on total phenolic content and total flavonoid content were found at higher coincidence with each other and with DPPH antioxidant activity. In conclusion, exogenously applied melatonin mimics IAA activity in root growth and regulates well in 16-h light/8-h dark, thereby giving protection to plant system against light stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi BH, Khan MA, Mahmood T, Ahmad M, Chaudhary MF, Khan MA (2010) Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tissue Organ Cult (PCTOC) 101(3):371–376

    Article  CAS  Google Scholar 

  • Afreen F, Zobayed S, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41(2):108–115

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Abbasi BH (2013) Production of commercially important secondary metabolites and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Ind Crops Prod 49:400–406

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42(2):147–152. doi:10.1111/j.1600-079X.2006.00396.x

    Article  CAS  PubMed  Google Scholar 

  • Arnao M, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46(1):58–63

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19(12):789–797

    Article  CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56(3):238–245

    Article  CAS  PubMed  Google Scholar 

  • Baraldi P, Bertazza G, Bregoli A, Fasolo F, Rotondi A, Predieri S, Serafini-Fracassini D, Slovin J, Cohen J (1995) Auxins and polyamines in relation to differential in vitro root induction on microcuttings of two pear cultivars. J Plant Growth Regul 14(1):49–59

    Article  CAS  Google Scholar 

  • Cao J, Murch S, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chrom A 1134:333–337

    Article  CAS  Google Scholar 

  • Chang C-C, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10(3):178–182

    CAS  Google Scholar 

  • Dubbels R, Reiter R, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara H, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18(1):28–31

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Ludwig-Müller J (1993) Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol Plant 88(2):382–389

    Article  CAS  Google Scholar 

  • Ford Y-Y, Bonham E, Cameron R, Blake P, Judd H, Harrison-Murray R (2002) Adventitious rooting: examining the role of auxin in an easy-and a difficult-to-root plant. Plant Growth Regul 36(2):149–159

    Article  CAS  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220(1):140–144

    Article  PubMed  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63(4):1619–1636

    Article  PubMed  Google Scholar 

  • Khan MA, Abbasi BH, Ahmed N, Ali H (2013) Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod 46:105–110

    Article  CAS  Google Scholar 

  • Khan MA, Abbasi BH, Ali H, Ali M, Adil M, Hussain I (2015) Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L. Plant Cell Tissue Organ Cult (PCTOC) 120(1):127–139

    Article  CAS  Google Scholar 

  • Kolář J, Macháčková I (2005) Melatonin in higher plants: occurrence and possible functions. J Pineal Res 39:333–341. doi:10.1111/j.1600-079X.2005.00276.x

    Article  PubMed  Google Scholar 

  • Kolář J, Johnson CH, Macháčková I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiol Plant 118(4):605–612

    Article  Google Scholar 

  • Lerner AB, Case JD, Lee Y, Takahashi TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587–2592. doi:10.1021/ja01543a060

    Article  CAS  Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67(25):3023–3029

    Article  CAS  PubMed  Google Scholar 

  • Mir B, Khazir J, Hakeem K, Koul S, Cowan D (2014) Enhanced production of withaferin-A in shoot cultures of Withania somnifera (L.) Dunal. J Plant Biochem. doi:10.1007/s13562-014-0264-8

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38(6):531–536

    Article  CAS  Google Scholar 

  • Murthy H, Praveen N (2012) Influence of macro elements and nitrogen source on adventitious root growth and withanolide-A production in Withania somnifera (L.) Dunal. Nat Prod Res 26(5):466–473

    Article  CAS  PubMed  Google Scholar 

  • Murthy H, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult (PCTOC) 118(1):1–16. doi:10.1007/s11240-014-0467-7

    Article  CAS  Google Scholar 

  • Nordström A-C, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96(3):856–861

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). J Pineal Res 52(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang X, Tan DX, Reiter RJ, Chan Z (2015) Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L.) Pers.). J Pineal Res. doi:10.1111/jpi.12246

    Google Scholar 

  • Sivanandhan G, Arun M, Mayavan S, Rajesh M, Mariashibu T, Manickavasagam M, Selvaraj N, Ganapathi A (2012) Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind Crops Prod 37(1):124–129

    Article  CAS  Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell Online 17(5):1343–1359

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol Plant 126(1):45–51. doi:10.1111/j.0031-9317.2005.00582.x

    Article  CAS  Google Scholar 

  • Tan D-X (2015) Melatonin and plants. J Exp Bot eru523. doi:10.1093/jxb/eru523

  • Tan D-X, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63(2):577–597

    Article  CAS  PubMed  Google Scholar 

  • Velioglu Y, Mazza G, Gao L, Oomah B (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46(10):4113–4117

    Article  CAS  Google Scholar 

  • Vollsnes A, Melø T, Futsaether C (2012) Photomorphogenesis and pigment induction in lentil seedling roots exposed to low light conditions. Plant Biology 14(3):467–474

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, Kolar J, Witters E, van Dongen W, van Onckelen H, Machackova I (2001) Daily profile of melatonin levels in Chenopodium rubrum depends on photoperiod. J Plant Physiol 158:1491–1493

    Article  CAS  Google Scholar 

  • Yokawa K, Kagenishi T, Kawano T, Mancuso S, Baluska F (2011) Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signal Behav 6(10):1460–1464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Haider Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adil, M., Abbasi, B.H. & Khan, T. Interactive effects of melatonin and light on growth parameters and biochemical markers in adventitious roots of Withania somnifera L.. Plant Cell Tiss Organ Cult 123, 405–412 (2015). https://doi.org/10.1007/s11240-015-0844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0844-x

Keywords

Navigation