Skip to main content
Log in

Long-term exposure treatments revert the initial SA-induced alterations of phenolic metabolism in grapevine cell cultures

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Vitis vinifera L. cv. Monastrell calli were used to evaluate the effects of long-term exposure to different salicylic acid (SA) concentrations (0.00, 0.01, 0.10 and 1.00 mM) on cell growth and phenolic metabolism. The impaired cell growth caused by high SA concentrations after the first sub-culture of cells was reverted to normal growth even in the presence of 1 mM SA after a few cycles of repeated culture in the same conditions. The initial alterations in the levels of total soluble phenolics, and in the peroxidase (PRX) activity, especially when resveratrol was used as substrate, were also counteracted upon long-term exposure to the phytohormone. Moreover, the recovering of PRX enzymatic activity paralleled the restoration of the PRX isoenzyme pattern. Since phenolic compounds and PRXs can be considered as markers of stress the restoration of their constitutive levels could be considered as indicators of cessation of stress allowing cells to reassume their normal growth and metabolic functions, even in the stressing initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LR:

Local resistance

PRX:

Class III plant peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAR:

Systemic acquired resistance

TMB:

Tetramethylbencidine-HCl

References

  • Abreu ME, Munné-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Bae EK, Lee H, Lee JS, Noh EW, Jo J (2006) Molecular cloning of a peroxidase gene from poplar and its expression in response to stress. Tree Physiol 26:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G, Chua NH (1994) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8:2188–2202

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Radchenko SV, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:213–221

    Article  CAS  PubMed  Google Scholar 

  • Calderón AA, Zapata JM, Pedreño MA, Muñoz R, Ros-Barceló A (1992) Levels of 4-hydroxystilbene-oxidizing isoperoxidases related to constitutive resistance in in vitro cultured grapevine. Plant Cell Tissue Organ Cult 29:63–70

    Article  Google Scholar 

  • Calderón AA, Zapata JM, Muñoz R, Pedreño MA, Ros-Barceló A (1993) Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. N Phytol 124:455–463

    Article  Google Scholar 

  • Calderón AA, Zapata JM, Ros-Barceló A (1994) Peroxidase-mediated formation of resveratrol oxidation products during the hypersensitive-like reaction of grapevine cells to an elicitor from Trichoderma viride. Physiol Mol Plant Pathol 44:289–299

    Article  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Cessna SG, Yahraus T, Devine R, Low PS (2000) Homologous and heterologous desensitization and synergy in pathways leading to the soybean oxidative burst. Planta 211:736–742

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • DeFraia CT, Zhang X, Mou Z (2010) Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. Plant J 64:511–523

    Article  CAS  PubMed  Google Scholar 

  • Delaunois B, Farace G, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S (2014) Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ Sci Pollut Res Int 21:4837–4846

    Article  PubMed  Google Scholar 

  • Fang F, Huang WD (2013) Salicylic acid modulated flavonol biosynthesis in three key phases during grape berry development. Eur Food Res Technol 237:441–448

    Article  CAS  Google Scholar 

  • Fernandes CF, Moraes VCP, Vasconcelos IM, Silveira JAG, Oliveira JTA (2006) Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. J Plant Physiol 163:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Ferrer MA, Ros-Barceló A (1994) Inactivation of cell wall acidic peroxidase isoenzymes during the oxidation of coniferyl alcohol in Lupinus. Phytochemistry 36:1161–1163

    Article  CAS  Google Scholar 

  • Ferrer MA, Calderón AA, Muñoz R, Ros-Barceló A (1990) 4-Methoxy-α-naphthol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem Anal 1:63–69

    Article  Google Scholar 

  • Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Pereira DM, Valentão P, Andrade PB, Duarte P, Ros-Barceló A, Sottomayor M (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62:2841–2854

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Fry SC, Kauss H (1998) Low-molecular-weight precursors for defense-related cell wall hydroxycinnamoyl esters in elicited parsley suspension cultures. Plant Cell Rep 17:379–383

    Article  CAS  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. N Phytol 161:641–675

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Ganesan V, Thomas G (2001) Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci 160:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Harfouche AL, Rugini E, Mencarelli F, Botondi R, Muleo R (2008) Salicylic acid induces H2O2 production and endochitinase gene expression but not ethylene biosynthesis in Castanea sativa in vitro model system. J Plant Physiol 165:734–744

    Article  CAS  PubMed  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hiraga S, Ito H, Yamakawa H, Ohtsubo N, Seo S, Mitsuhara I, Matsui H, Honma M, Ohashi Y (2000) An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol Plant Microbe Interact 13:210–216

    Article  CAS  PubMed  Google Scholar 

  • Imberty A, Goldberg R, Catesson AM (1984) Tetramethylbenzidine and p-phenylenediamine-pyrocatechol for peroxidase histochemistry and biochemistry: two new, non-carcinogenic chromogens for investigating lignification process. Plant Sci Lett 35:103–108

    Article  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    CAS  PubMed  Google Scholar 

  • Kawano T, Muto S (2000) Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J Exp Bot 51:685–693

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Kawano N, Lapeyrie F (2002) A fungal auxin antagonist, hypaphorine prevents the indole-3-acetic acid-dependent irreversible inactivation of horseradish peroxidase: inhibition of Compound III-mediated formation of P-670. Biochem Biophys Res Commun 294:553–559

    Article  PubMed  Google Scholar 

  • Kovácik J, Grúz J, Backor M, Strnad M, Repcák M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    Article  PubMed  Google Scholar 

  • Kraeva E, Andary C, Carbonneau A, Deloire A (1998) Salicylic acid treatment of grape berries retards ripening. Vitis 37:143–144

    CAS  Google Scholar 

  • López-Arnaldos T, Ferrer MA, Muñoz R, Calderón AA (2001) Purification and stability of a basic peroxidase from strawberry callus culture. Plant Physiol Biochem 39:479–486

    Article  Google Scholar 

  • López-Orenes A, Martínez-Moreno JM, Calderón AA, Ferrer MA (2013a) Changes in phenolic metabolism in salicylic acid-treated shoots of Cistus heterophyllus. Plant Cell Tissue Organ Cult 113:417–427

    Article  Google Scholar 

  • López-Orenes A, Ros-Marín AF, Ferrer MA, Calderón AA (2013b) Antioxidant capacity as a marker for assessing the in vitro performance of the endangered Cistus heterophyllus. Sci World J 2013. doi:10.1155/2013/176295

  • Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, Vandenbussche F, Van der Straeten D, Yamaguchi T, Tsukaya H, Witters E, De Jaeger G, Houben A, Van Lijsebettens M (2010) Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA 107:1678–1683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obinata N, Yamakawa T, Takamiya M, Tanaka N, Ishimaru K, Kodama T (2003) Effects of salicylic acid on the production of procyanidin and anthocyanin in cultured grape cells. Plant Biotechnol 20:105–111

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pérez-Tortosa V, López-Orenes A, Martínez-Pérez A, Ferrer MA, Calderón AA (2012) Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem 130:362–369

    Article  Google Scholar 

  • Poór P, Gémes K, Horváth F, Szepesi A, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  PubMed  Google Scholar 

  • Ram M, Prasad KV, Singh SK, Hada BS, Kumar S (2013) Influence of salicylic acid and methyl jasmonate elicitation on anthocyanin production in callus cultures of Rosa hybrida L. Plant Cell Tissue Organ Cult 113:459–467

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) lnfluence of salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes: salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol 115:137–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renault AS, Deloire A, Bierne J (1996) Pathogenesis-related proteins in grapevines induced by salicylic acid and Botrytis cinerea. Vitis 35:49–52

    CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Ros-Barceló A, Zapata JM, Calderón AA (1996) A basic peroxidase isoenzyme, marker of resistance against Plasmopara viticola in grapevines, is induced by an elicitor from Trichoderma viride in susceptible grapevines. J Phytophatol 144:309–313

    Article  Google Scholar 

  • Srinivasan T, Kumar KRR, Meur G, Kirti PB (2009) Heterologous expression of Arabidopsis NPR1 (AtNPR1) enhances oxidative stress tolerance in transgenic tobacco plants. Biotechnol Lett 31:1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol Plant 25:249–256

    Article  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3:207–219

    Article  CAS  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Xu E, Brosché M (2014) Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biol 14:155

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microbe Interact 14:725–736

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Hua D, Chen Z, Zhou Z, Gong Z (2009) Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant J 60:79–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundación Séneca (Project No. 08799/PI/08). AL-O holds a grant from the MECD (AP2012-2559). Part of this work was carried out at the Instituto de Biotecnología Vegetal (Universidad Politécnica de Cartagena).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio A. Calderón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lajara, M.M., López-Orenes, A., Ferrer, M.A. et al. Long-term exposure treatments revert the initial SA-induced alterations of phenolic metabolism in grapevine cell cultures. Plant Cell Tiss Organ Cult 122, 665–673 (2015). https://doi.org/10.1007/s11240-015-0800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0800-9

Keywords

Navigation