Skip to main content
Log in

Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of Hypericum perforatum

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Hypericum perforatum cell suspensions were evaluated for their growth, phenylpropanoid and naphtodianthrone productions, and antioxidant activity after treatments with polysaccharide elicitors chitin (CHI), pectin (PEC) and dextran (DEX). Polysaccharide elicitation of cell cultures showed a considerable improving effect on phenylpropanoid production (phenolics, flavonoids, flavanols and anthocyanins) during the post-elicitation period. Even that enhanced phenylpropanoid production was related to growth suppression of CHI elicited cells, PEC and DEX were presented as effective elicitors without loss of cell biomass. Phenylpropanoid accumulation in elicited cells was correlated to markedly higher enzyme activities of phenylalanine ammonia lyase and chalcone-flavanone isomerase. Cell cultures were found to respond rapidly towards the applied elicitors through an early stimulation of both naphtodiantrones, hypericin (HYP) and pseudohypericin (PHYP). The CHI was proposed as a much more prominent elicitor in stimulation of HYP and PHYP levels in cell suspensions. All tested polysaccharide elicitors stimulated non-enzymatic antioxidant properties in cell extracts indicating the potential role of phenolic compounds as effective antioxidants. With regards to the antioxidant enzymes, an up-regulation of peroxidase and catalase activities was observed in PEC and DEX elicited cells, whereas CHI did not give any stimulatory effect on enzymatic activities. These findings suggest the involvement of an efficient antioxidant defense system in the adaptive response of cells to polysaccharide elicitation. Altogether, these results indicated that H. perforatum cells elicited with polysaccharides represent a promising experimental system for enhanced production of phenylpropanoids and naphtodianthrones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAT:

Catalase

CHFI:

Chalcone-flavanone isomerase

CHI:

Chitin

DEX:

Dextran

HYP:

Hypericin

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

NEAOP:

Non-enzymatic antioxidant properties

PAL:

Phenylalanine ammonia lyase

PEC:

Pectin

PHYP:

Pseudohypericin

POD:

Peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

TA:

Total anthocyanins

TF:

Total flavonoids

TFL:

Total flavanols

TP:

Total phenolics

References

  • Abbasi AB, Khan M, Guo B, Bokhari SM, Khan MA (2011) Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell Tissue Organ Cult 105:337–344

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 34:32413–32422

    Article  Google Scholar 

  • Belch I, Navarro S, Almagro L et al (2012) Early signaling events in grapevine cells elicited with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 62:107–110

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Mewis I, Knorr D, Smetanska I (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 108:401–409

    Article  CAS  Google Scholar 

  • Conceição L, Ferrares F, Tavares R, Dias A (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Conforti F, Statti GA, Tundis R, Menichini F, Houghton P (2002) Antioxidant activity of methanolic extract of Hypericum triquetrifolium Turra aerial part. Fitoterapia 6:479–483

    Article  Google Scholar 

  • Cui XH, Murthy HN, Wu CH, Paek KY (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 103:7–14

    Article  CAS  Google Scholar 

  • Danova K, Čellárová E, Macková A, Daxnerová Z, Kapchina-Toteva V (2010) In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In Vitro Cell Dev Biol Plant 46:422–429

    Article  CAS  Google Scholar 

  • Danova K, Nikolova-Damianova B, Denev R, Dimitrov D (2012) Influence of vitamins on polyphenolic content, morphological development, and stress response in shoot cultures of Hypericum spp. Plant Cell Tissue Organ Cult 110:383–393

    Article  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MKS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Antevski S, Atanasova-Pancevska N, Petreska J, Stefova M, Kungulovski D, Spasenoski M (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64:113–121

    Article  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Joseph C, Hagège D (2014) Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. Sci World J. doi:10.1155/2014/609649

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagège D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tissue Organ Cult 89:1–13

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Cult 113:25–39

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures soybean root cells. Exp Cell Res 50:148–151

    Article  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied Microbiol Biotechnol 83:809–823

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Giusti MM, Rodriguez-Saona LE, Wrolstad RE (1999) Spectral characteristics, molar absorptivity and color of pelargonidin derivates. J Agric Food Chem 47:4631–4637

    Article  CAS  PubMed  Google Scholar 

  • Gonzales LF, Rojas CM, Perez JF (1999) Diferulate and lignin formation is related to biochemical differences of wall-bound peroxidases. Phytochemistry 50:711–717

    Article  Google Scholar 

  • Karppinen K, Hohtola A (2008) Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    Article  CAS  PubMed  Google Scholar 

  • Komaraiah P, Amrutha RN, Kishor PK, Ramakrishna SV (2002) Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme Microb Technol 31:634–639

    Article  CAS  Google Scholar 

  • Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tissue Organ Cult 103:333–342

    Article  CAS  Google Scholar 

  • Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640

    Article  CAS  Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  • Lim FL, Yam MF, Asmawi MZ, Chan LK (2013) Elicitation of Orthosiphon stamineus cell suspension culture for enhancement of phenolic compounds biosynthesis and antioxidant activity. Ind Crops Prod 50:436–442

    Article  CAS  Google Scholar 

  • Makris DP, Boskou G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20:125–132

    Article  CAS  Google Scholar 

  • Marron N, Delay D, Petit JM, Dreyer E, Kahlem G, Delmotte FM, Brignolas F (2002) Physiological traits of two Populus × euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle. Tree Physiol 22:49–858

    Article  Google Scholar 

  • Morkunas I, Ratajczak L (2014) The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant 36:1607–1619

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) St. John’s wort (Hypericum perforatum L.): challenges and strategies for production of chemically consistent plants. Can J Plant Sci 86:765–771

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  • Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s Wort. J Nat Prod 73:1015–1102

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Qu J, Zhang W, Yu X (2011) A combination of elicitation and precursor feeding leads to increased anthocyanin synthesis in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 107:261–269

    Article  CAS  Google Scholar 

  • Santarem ER, Zamban DC, Felix LM, Astarita LV (2008) Secondary metabolism of Hypericum perforatum induced by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Anim 44:S52–S80

    Article  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A, Tamura K, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci 98:367–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell Tissue Organ 108:465–472

    Article  CAS  Google Scholar 

  • Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2006) Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41:50–60

    Article  CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Silva BA, Ferreres F, Malva JO, Dias ACP (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90:157–167

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    Article  CAS  Google Scholar 

  • Sivakumar G, Paek KY (2005) Methyl jasmonate induce enhanced production of soluble biophenols in Panax ginseng adventitious roots from commercial scale bioreactors. Chem Nat Compd 41:669–673

    Article  CAS  Google Scholar 

  • Solomon D, Adams J, Graves N (2013) Economic evaluation of St. John’s wort (Hypericum perforatum) for the treatment of mild to moderate depression. J Affect Disord 148:228–234

    Article  PubMed  Google Scholar 

  • SPSS Inc. (2001) SPSS Base 11.0 user’s guide. SPSS, Chicago

    Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2014a) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76:199–210

    Article  Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M, Pavokovic D, Simic SG (2014b) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36:2555–2569

    Article  CAS  Google Scholar 

  • Vardapetyan HR, Oganesyan AA, Kabasakalyan EE, Tiratsuyan SG (2006) The influence of some elicitors on growth and morphogenesis of Hypericum perforatum L. callus cultures. Russ J Dev Biol 37:350–353

    Article  CAS  Google Scholar 

  • Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tissue Organ Cult 108:27–35

    Article  CAS  Google Scholar 

  • Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:1214–1234

    Article  CAS  PubMed  Google Scholar 

  • Vijaya SN, Udayasri PV, Aswani KY, Ravi BB, Phani KY, Vijay VM (2010) Advancements in the production of secondary metabolites. J Nat Prod 3:112–123

    Google Scholar 

  • Walker ST, Pal Bais H, Vivanco MJ (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L (St. John’s wort). Phytochemistry 60:289–293

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Qian J, Yao L, Lu Y (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:1–9

    Article  Google Scholar 

  • Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351

    Article  CAS  PubMed  Google Scholar 

  • Wiktorowska E, Długosz M, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme Microb Technol 46:14–20

    Article  CAS  Google Scholar 

  • Yamaner Ö, Erdağ BB, Gökbulut C (2013) Stimulation of the production of hypericins in in vitro seedlings of Hypericum adenotrichum by some biotic elicitors. Turk J Bot 37:153–159

    CAS  Google Scholar 

  • Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2014) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 1–18

  • Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87:137–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work and a Ph.D. Grant (Sonja Gadzovska Simic) was supported by the Ministère des Affaires Etrangères (Programme COCOP: Réseau d’Enseignement régional Postgraduate en Biologie, Grant No. DSUR-NGE-4B1-505). We thank Dr. F. Brignolas, Dr. S. Ounnnar and S. Pochon for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Gadzovska Simic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzovska Simic, S., Tusevski, O., Maury, S. et al. Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of Hypericum perforatum . Plant Cell Tiss Organ Cult 122, 649–663 (2015). https://doi.org/10.1007/s11240-015-0798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0798-z

Keywords

Navigation