Skip to main content
Log in

Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salinity and drought are two very important abiotic stressors that negatively impact the growth and yield of all sensitive crop plants. Genes from halophytes have been shown to be useful to engineer crop plants that can survive under adverse soil and water conditions. The present report establishes, for the first time, the physiological role of a class one ADP ribosylation factor gene (SaARF1) from the halophyte Spartina alterniflora (smooth cordgrass) in imparting salinity and drought stress tolerance when expressed in both monocot (rice) and dicot (Arabidopsis) systems. The Arabidopsis and rice plants overexpressing ARF1 are many-fold more tolerant to salt and drought than wild-type (WT) plants. The transgenics exhibited improved growth and productivity relative to WT through tissue tolerance by maintaining higher relative water content and membrane stability, and higher photosynthetic yield by retaining higher chlorophyll concentration and fluorescence under stress conditions compared to WT. These findings indicated that genes from halophyte resources can be useful to engineer and improve salt and drought stress tolerance in both monocot and dicot plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baisakh N, Subudhi P, Varadwaj P (2008) Primary responses to salt stress in a halophyte Spartina alterniflora (Loisel). Funct Integr Gen 8:287–300

    Article  CAS  Google Scholar 

  • Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora (Loisel). Plant Biotech J 10:453–464

    Article  CAS  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    Article  CAS  Google Scholar 

  • Batlang U, Baisakh N, Ambavaram MMR, Pereira A (2012) Phenotypic and physiological evaluation for drought and salinity stress responses in rice. In: Yinong Yang (ed) “Rice Methods”. Humana Press, Totowa, pp 209–226

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Curr Sci 100:1–10

    Google Scholar 

  • Bressan R, Park HC, Orsini F, Oh D, Dassanayake M, Inan G, Yun G, Bohnert HJ, Maggio A (2013) Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotech Rep 7:27–37

    Article  Google Scholar 

  • Brown AH, Gutoski S, Slaughter C, Sternweis PC (1993) ADP-ribosylation factor (ARF), a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Chavan PD, Karadge BA (1986) Growth, mineral nutrition, organic constituents and rate of photosynthesis in Sesbania glandiflora L. grown under saline conditions. Plant Soil 92:395–404

    Article  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chen QJ, Niu XG, Zhang R, Lin HQ, Xu CY, Wang XC, Wang GY, Chen J (2007) Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Environ 53:490–498

    CAS  Google Scholar 

  • Cockcroft S, Thomas GM, Fenosome A, Geny B, Cunningham E, Gout I, Hiles I, Totty NF, Truong O, Hsuan JJ (1994) Phospholipase D: a downstream effector of ARF in granulocytes. Science 263:523–526

    Article  PubMed  CAS  Google Scholar 

  • Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sági L, Swennen R, Terauchi R (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36

    PubMed  CAS  Google Scholar 

  • D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    Article  PubMed  CAS  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Haq KMR, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  PubMed  CAS  Google Scholar 

  • daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753–1771

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 1:36

    Google Scholar 

  • Dix PJ, Pearce RS (1981) Proline accumulation in NaCl resistant and sensitive cell lines of Nicotiana sylvestris. Z Pflanzenphysiol 102:243–248

    Article  CAS  Google Scholar 

  • Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tiss Organ Cult 114:61–70

    Article  CAS  Google Scholar 

  • Gebbie LK, Burn JE, Hocart CH, Williamson RE (2005) Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L. Heyn.; genome analysis and antisense suppression. J Exp Bot 414:1079–1091

    Article  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  CAS  Google Scholar 

  • Hyodo K, Mine A, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T (2013) ADP Ribosylation Factor 1 plays an essential role in the replication of a plant RNA virus. J Virol 87:163

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defense. J Genet 85:237–254

    Article  PubMed  CAS  Google Scholar 

  • Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-biphosphate synthesis in the Golgi compartment. J Biol Chem 275:13962–13966

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Rao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Pontier D, Lam E (2002a) Spectral profiling for the simultaneous observation of four distinct fluorescent proteins and detection of protein–protein interaction via fluorescence resonance energy transfer in tobacco leaf nuclei. Plant Physiol 129:931–942

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel LA (2002b) Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. Plant Methods 19(4):9

    Google Scholar 

  • Katschnig D, Broekman R, Rozema J (2012) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Singla-Pareek SL, Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, Kim DH, Lee KH, Hwang I (2002) ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis. Plant Physiol 129:1507–1520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee WY, Hong JK, Kim CY, Chun HJ, Park HC, Kim JC, Yun DJ, Chung WK, Lee SH, Lee SY, Cho MJ, Lim CO (2003) Over-expressed rice ADP-ribosylation factor 1 (RARF1) induces pathogenesis-related genes and pathogen resistance in tobacco plants. Physiol Plant 119:573–581

    Article  CAS  Google Scholar 

  • Lorenzo L, Merchan F, Blanchet S, Megı′as M, Frugier F, Crespi M, Sousa C (2007) Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiol 145:1521–1532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218

    Article  CAS  Google Scholar 

  • Matheson LA, Hanton SL, Rossi M, Latijnhouwers M, Stefano G, Renna L, Brandizzi F (2007) Multiple roles of ADP-Ribosylation factor 1 in plant cells include spatially regulated recruitment of coatomer and elements of the Golgi matrix. Plant Physiol 143:1615–1627

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Min MK, Jang M, Lee M, Lee J, Song K, Lee Y, Choi KY, Robinson DG, Hwang I (2013) Recruitment of Arf1-GDP to golgi by Glo3p-Type Arf GAPs is crucial for golgi maintenance and plant growth. Plant Physiol 161:676–691

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MCE, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci USA 107:21890–21895

    Article  PubMed Central  PubMed  Google Scholar 

  • Nomura K, DebRoy S, Lee YH, Pumplin H, Jones J, He SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    Article  PubMed  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Pimpl P, Movafeghi A, Coughlan S, Denecke J, Hillmer S, Robinson DG (2000) In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12:2219–2236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qin X, Lin F, Li Y, Gou C, Chen F (2011) Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.). Mol Biol Rep 38:1681–1686

    Article  PubMed  CAS  Google Scholar 

  • Rao MVR, Behera KS, Baisakh N, Datta SK, Rao GJN (2009) Transgenic indica rice cultivar ‘Swarna’ expressing a potato chymotrypsin inhibitor pin2 gene show enhanced levels of resistance to yellow stem borer. Plant Cell Tiss Organ Cult 99:277–285

    Article  CAS  Google Scholar 

  • Ritzenthaler C, Nebenführ A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG (2002) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14:237–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Schindler C, Rodriguez F, Poon PP, Singer RA, Johnston GC, Spang A (2009) The GAP domain and the SNARE, coatomer and cargo interaction region of the ArfGAP2/3 Glo3 are sufficient for Glo3 function. Traffic 10:1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77:1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Sikuku PA, Netondo GW, Onyango JC, Musyimi DM (2010) Effects of water deficit on physiology and morphology of three varieties of NERICA rainfed rice (Oryza sativa L.). ARPN J Agric Biol Sci 5:23–28

    Google Scholar 

  • Song XF, Yang CY, Liu J, Wang WC (2006) RPA, a class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiol 141:966–976

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spang A, Shiba Y, Randazzo PA (2010) Arf GAPs: gatekeepers of vesicle generation. FEBS Lett 584:2646–2651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J 46:95–110

    Article  PubMed  CAS  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  CAS  Google Scholar 

  • Takacs EM, Suzuki M, Scanlon MJ (2012) Discolored1 (DSC1) is an ADP-ribosylation factor-GTPase activating protein required to maintain differentiation of maize kernel structures. Front Plant Sci 3:1–15

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vinayak H, Lokhande TD, Nikam VY, Patade ML, Ahire PS (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 104:41–49

    Article  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Dissection of arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. IRRI, Philippines, p 83

    Google Scholar 

  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Biotechnology AgCenter Interdisciplinary Team (BAIT) funding from the Louisiana State University Agricultural Center. The manuscript has been approved for publication by the Louisiana Agricultural Experimental Station as MS# 2013-306-11847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Baisakh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (PPT 1946 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, R., Ramanarao, M.V., Lee, S. et al. Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis . Plant Cell Tiss Organ Cult 117, 17–30 (2014). https://doi.org/10.1007/s11240-013-0416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0416-x

Keywords

Navigation