Skip to main content
Log in

The promoter of soybean photoreceptor GmPLP1 gene enhances gene expression under plant growth regulator and light stresses

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To reveal the molecular mechanism underlying the expression of soybean PLP1 (GmPLP1) gene that contains PAS/LOV domain, its 5′ regulatory region was analyzed. The 1.5 kbp fragment upstream of the GmPLP1 gene was isolated from soybean cultivar ‘Dongnong L13’ by genome walking. There were 107 cis-acting elements in the promoter predicted by online software Plant CARE and PLACE. The possible transcription start site (TSS) was confirmed by RACE (rapid-amplification of cDNA ends) and the promoter fragment deletions were inserted into the 5′ region of the gusA reporter gene in vector pBI121 (replacing the 35S promoter). In order to determine the promoter characteristic of GmPLP1, The constructs were transferred into Nicotiana tabacum and Glycine max. The GUS activity was up-regulated under dark, blue light, gibberellin A3 and abscisic acid driven by GmPLP1 promoter. The highest GUS enzyme activity was analyzed in transgenic plants at seedling and seed developmental stages. The high GUS enzyme level was detected in the leaves of tobacco and soybean seedlings, as well in seed formation when the full sequence of the promoter was present. The promoter activities decreased along with the plant being close to maturity. These results provided evidence of the developmental regulation of the GmPLP1 promoter in seedlings and developing seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GmPLP1 :

Glycine max PAS/LOV protein 1

Phy:

Phytochrome

Cry:

Crytochrome

GUS:

β-Glucuronidase gene

LD:

Long days

SD:

Short days

SDP:

Short-day plant

LDP:

Long-day plant

DNP:

Day-neutral plant

ET:

Ethylene

ABA:

Abscisic acid

GA3:

Gibberellin A3

MeJA:

Methyl jasmonic acid

BA:

6-Benzyl aminopurine

IAA:

Indoleacetic acid

TSS:

Transcription start site

CTAB:

Cetyltriethylammnonium bromide

References

  • Amritphale D, Takeuchi Y, Ramakrishna P, Kusumoto D (2005) The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber. J Exp Bot 56:2173–2181

    Article  PubMed  CAS  Google Scholar 

  • Bognar LK, Hall A, Adam E, Thain SC, Nagy F, Millar AJ (1996) The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc Natl Acad Sci USA 96:14652–14659

    Article  Google Scholar 

  • Buttani V, Losi A, Eggert T, Krauss U (2007) Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV–LOV dimerization and interdomain interactions. Photochem Photobiol Sci 6:41–49

    Article  PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Conley TR, Park SC, Kwon HB, Peng HS, Shih MC (1994) Characterization of cis-acting elements in light regulation of the nuclear gene encoding the A subunit of chloroplast isozymes of glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. Mol Cell Biol 14:2525–2533

    Article  PubMed  CAS  Google Scholar 

  • Coupland G, Prat Monguio S (2005) Cell signalling and gene regulation: signalling mechanisms in plants: examples from the present and the future. Curr Opin Plant Biol 8:457–461

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18:639–650

    Article  PubMed  CAS  Google Scholar 

  • Etehadnia M, Waterer DR, Tanino KK (2008) The method of ABA application affects salt stress responses in resistant and sensitive potato lines. J Plant Growth Regul 27:331–341

    Article  CAS  Google Scholar 

  • Fankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16

    Article  PubMed  CAS  Google Scholar 

  • Galoch E, Czaplewska J, Burkacka DE, Kopce-wicz J (2002) Induction and stimulataion of in vitro flowering of Pharbitis nil by cytokinin and gibberellin. Plant Growth Regul 37:199–205

    Article  CAS  Google Scholar 

  • Gittins JR, Pellny TK, Hiles ER, Rosa C, Biricolti S, James DJ (2000) Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill.). Planta 210(2):232–240

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements. PLACE. database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Syhita D (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature 426:302–306

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sato T, Fukuda H, Komamine A (1994) Meristem-specific gene expression directed by the promoter of the S-phase-specific gene, cyc07, in transgenic Arabidopsis. Plant Mol Biol 24:863–878

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Woodson WR (1993) Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol 22:43–58

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Késy J, Maciejewska B, Sowa M, Szumilak M, Kawałowski K, Borzuchowska M, Kopcewicz J (2008) Ethylene and IAA interactions in the photoperiodic flower induction of Pharbits nil. Plant Growth Regul 55:43–50

    Article  Google Scholar 

  • Kevin L, Wang C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot 60:2501–5515

    Article  PubMed  CAS  Google Scholar 

  • Lariguet P, Dunand C (2005) Plant photoreceptors: phylogenetic overview. J Mol Evol 61:559–569

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Swaminathan K, Hudson ME (2011) Rapid, organ-specific transcriptional responses to light regulate photomorphogenic development in dicot seedlings. Plant Physiol 156(4):2124–2140

    Article  PubMed  CAS  Google Scholar 

  • Lin CT (2000) Photoreceptor and regulation of flowering time. Plant Physiol 123:39–50

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J 10:893–902

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690

    Article  PubMed  CAS  Google Scholar 

  • Liu BH, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics 180:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Li D, Wang Z, Meng F, Li Y, Wu X, Teng W, Han Y, Li W (2012) Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell Tissue Organ Cult 111(3):277–289

    Article  CAS  Google Scholar 

  • Ma QH, Wang XM, Wang ZM (2008) Expression of isopentenyl transferase gene controlled by seed-specific lectin promoter in transgenic tobacco influences seed development. J Plant Growth Regul 27:68–76

    Article  CAS  Google Scholar 

  • Millar A, Straum MA, Chory J, Chua NH, Kay S (1995) Phytochrome and blue responsive photoreceptors regulate circadian period in Arabidopsis thaliana. Science 267:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Nozue K, Maloof NJ (2009) Diurnal regulation of plant growth. Plant Cell Environ 29:396–408

    Article  Google Scholar 

  • Ogura Y, Komatsu A, Zikihara K, Nanjo T, Tokutomi S, Wada M, Kiyosue T (2008a) Blue light diminishes interaction of PAS/LOV proteins, putative blue light receptors in Arabidopsis thaliana, with their interacting partners. J Plant Res 121:97–105

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Tokutomi S, Wada M, Kiyosue T (2008b) PAS/LOV proteins A proposed new class of plant blue light receptor. Plant Sign Behav 3:966–968

    Google Scholar 

  • Pan YH, Michael TP, Hudson ME, Kay SA, Chory J, Schuler MA (2009) Cytochrome P450 monooxygenases as reporter for circadian-regulated pathways. Plant Physiol 150:858–878

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Bernatzky R, Tanksley SD, Breidenbach RB, Kausch AP, Cashmore AR (1985) Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins in Lycopersicon esculentum (tomato). Gene 40:247–258

    Article  PubMed  CAS  Google Scholar 

  • Prashant S, Sunita MSL, Sirisha VL, Bhaskar VV, Rao AM, Narasu ML, Kishor PBK (2012) Isolation of cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase gene promoters from Leucaena leucocephala, a leguminous tree species, and characterization of tissue-specific activity in transgenic tobacco. Plant Cell Tissue Organ Cult 108(3):421

    Article  CAS  Google Scholar 

  • Prieto-Dapenal P, Almogueral P, Rojasl A, Jordanol J (1999) Seed-specific expression patterns and regulation by ABI3 of an unusual late embryogenesis-abundant gene in sunflower. Plant Mol Biol 39:615–627

    Article  Google Scholar 

  • Ramadan AM, Eissa HF, El-Domyati FM, Saleh NE, Ibrahim M, Salama M, Mahfouz M, Bahieldin A (2011) Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat. Plant Cell Tissue Organ Cult 107(3):373–381

    Article  CAS  Google Scholar 

  • Robertson FC, Skeffington AW, Gardner MJ, Webb AAR (2009) Interactions between circadian and hormonal signalling in plants. Plant Mol Biol 69:419–427

    Article  PubMed  CAS  Google Scholar 

  • Semsang N, Nemes C, Torre CD, Hernandez-Garcia CM, Finer JJ (2011) Isolation and characterization of the GmScream promoter family from soybean. In Vitro Cell Dev Biol Anim 47:70

    Google Scholar 

  • Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18:617–622

    Article  PubMed  CAS  Google Scholar 

  • Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gene Genet 202:429–434

    Article  CAS  Google Scholar 

  • Srivastava A, Handa AK (2005) Hormonal regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82

    Article  CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Thakare D, Kumudini S, Dinkins RD (2010) Expression of flowering-time genes in soybean E1 near-isogenic lines under short and long day conditions. Planta 231:951–963

    Article  PubMed  CAS  Google Scholar 

  • Tomohiro K, Masamitsu W (2000) LKP1.LOV Kelch protein 1: a factor involved in the regulation of flowering time in Arabidopsis. Plant J 23:807–815

    Article  Google Scholar 

  • Wang GL, Xu YN (2008) Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep 27:1177–1184

    Article  PubMed  Google Scholar 

  • Wilmowicz E, Késy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Namasivayam P, Abdullah MP (2012) The PAL2 promoter activities in relation to structural development and adaptation in Arabidopsis thaliana. Planta 235:267–277

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima Y, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA. Online www.pnas.org/cgi/doi/10.1073/pnas.1117982109

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120

    Article  PubMed  CAS  Google Scholar 

  • Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T (2003) A link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 44:619–629

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  Google Scholar 

  • Zhang QZ, Li HY, Li R, Hu RB, Fan CM, Chen FL, Wang ZH, Liu X, Fu YF, Lin CT (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA 105:21028–21033

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Luo QL, Yang CL, Han YP, Li WB (2008) A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Hao DQ, Chen LM, Lu QY, Zhang YW, Li YG, Li WB (2012a) Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants. J Exp Bot 63(8):3257–3270

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Shao SL, Li XW, Zhai Y, Zhang QL, Wang QY (2012b) Isolation and activity analysis of a seed-abundant soyAP1 gene promoter from soybean. Plant Mol Biol Rep 20(6):1400–1407

    Article  Google Scholar 

  • Zhu Q, Dabi T, Lamb C (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell 7:1681–1689

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted in the Key Laboratory of Soybean Biology of Chinese Education Ministry and Soybean Development Centre of Agricultural Ministry, financially supported by National High Technology Project (2006AA100104-4), National Nature Science Foundation Projects (30971810, 60932008), Key Projects of Soybean Transformation (2011ZX08004-002, 2011ZX08004-005), National 973 Project (2009CB118400) and Provincial & Chinese Education Ministry for the team of soybean molecular design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li.

Additional information

Qiulan Luo and Yongguang Li contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Q., Li, Y., Gu, H. et al. The promoter of soybean photoreceptor GmPLP1 gene enhances gene expression under plant growth regulator and light stresses. Plant Cell Tiss Organ Cult 114, 109–119 (2013). https://doi.org/10.1007/s11240-013-0310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0310-6

Keywords

Navigation