Skip to main content
Log in

Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The study was carried out to evaluate the amenability of tropical inbred and hybrid maize lines, using Agrobacterium mediated transformation technique. Agrobacterium tumefaciens strains EHA101 harbouring a pTF102 binary vector, EHA101, AGL1, and LBA4404 harbouring pBECK2000.4 plasmid, LBA4404, GV and EHA105 harbouring pCAMBIA2301 plasmid, and AGL1 harbouring the pSB223 plasmid were used. Delivery of transgenes into plant tissues was assessed using transient β-glucuronidase (gus) activity on the 3rd and 4th day of co-cultivation of the infected Immature Zygotic Embryos (IZEs) and embryogenic callus. Transient gus expression was influenced by the co-cultivation period, maize genotype and Agrobacterium strain. The expression was highest after the 3rd day of co-culture compared to the 4th day with intense blue staining was detected for IZEs which were infected with Agrobacterium strains EHA105 harbouring pCAMBIA2301 and EHA101 harbouring pTF102 vector. Putative transformants (To) were regenerated from bialaphos resistant callus. Differences were detected on the number of putative transformants regenerated among the maize lines. Polymerase chain reaction (PCR) amplification of Phosphinothricin acetyltransferase (bar) and gus gene confirmed the transfer of the transgenes into the maize cells. Southern blot hybridization confirmed stable integration of gus into PTL02 maize genome and segregation analysis confirmed the inheritance of the gus. A transformation efficiency of 1.4 % was achieved. This transformation system can be used to introduce genes of interest into tropical maize lines for genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

CTAB:

Cetyltrimethylammonium bromide

2,4-D:

2,4-Dichlorophenoxyacetic acid

bar :

Phosphinothricin acetyltransferase gene

gus :

β-Glucuronidase

IZEs:

Immature zygotic embryos

MS:

Murashige and Skoog

nptII :

Neomycin phosphotransferase II gene

To :

Primary transformants

YEP:

Yeast peptones extract

References

  • Ahmadabadi M, Ruf S, Bock R (2007) A leaf based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16:437–448

    Article  PubMed  CAS  Google Scholar 

  • Al-Forkan M, Power JB, Anthony P, Lowe K, Davey MR (2004) Agrobacterium-mediated transformation of Bangladesh indica rice. Cell Mol Biol Lett 9:287–300

    PubMed  CAS  Google Scholar 

  • Ali S, Xianyin Z, Xue Q, Hassan MJ, Qian H (2007) Investigation for improved genetic transformation mediated by Agrobacterium tumefaciens in two rice cultivars. Biotechnol 6:138–147

    Article  CAS  Google Scholar 

  • Armstrong CL (1999) The first decade of maize transformation: a review and future perspective. Maydica 44:101–109

    Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Ann Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Bommineni VR, Jauhar PP (1997) An evaluation of target cells and tissues in genetic transformation of cereals. Maydica 42:107–120

    Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Article  Google Scholar 

  • Carvalho CHS, Zehr US, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27(2):259–269

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified. New Phytol 170:429–443

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  • Chumakov MI, Rozhok NA, Velikov VA, Tyrnov VS, Volokhina IV (2006) Agrobacterium-mediated planta transformation of maize via filaments. Russ J Genet 42:893–897

    Article  CAS  Google Scholar 

  • Conway G, Toenniessen G (2003) Science for African food security. Science 299(5610):1187–1188

    Article  PubMed  CAS  Google Scholar 

  • Darbani B, Farajma S, Toorchi M, Noeparvar S, Stewart N, Mohammed S, Zakerbostanabad S (2008a) Plant transformation: needs and futurity of the transgenes. Biotechnology 7(3):403–412

    Article  CAS  Google Scholar 

  • Darbani B, Farajma S, Toorchi M, Zkerbastanabad S, Noeparvar S, Stewart N (2008b) DNA delivery methods to produce transgenic plants. Biotechnology 7(3):385–402

    Article  CAS  Google Scholar 

  • Diallo AO, Kifundu J, Wolde L, Odongo O, Mduruma ZO, Chivasti WS, Friesen DK, Mugo S, Bänziger M (2001) Drought and low nitrogen tolerant hybrids for the moist mid-altitude ecology of Easten Africa. Seventh Eastern and Southern Africa regional Maize Conference, 11th–15th Feb 2001, pp 206–212

  • El-Itriby HA, Assem SK, Hussein EHA, Abdel-Galil FM, Madkour MA (2003) Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cel Dev Biol Plant 39(5):524–531

    Article  Google Scholar 

  • Frame BR, Shou H, Chikwamba HRK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, McMurray JM, Fonger TN, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25(10):1024–1034

    Article  PubMed  CAS  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. MPMI 13:649–657

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice, maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 87:233–243

    Article  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Horn M, Harkey R, Vinas AK, Drees CF, Barker DK, Lane JR (2006) Use of HiII-elite inbred hybrids in Agrobacterium-based transformation of maize. In Vitro Cell Dev Biol Plant 42:359–366

    Article  Google Scholar 

  • Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult 83:187–200

    Article  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Syder MW, Zhang Q, Luethry MH (2004) Generation of marker free transgenics maize by regular two border Agrobacterium transformation vectors. Transgenic Res 13:451–461

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefacien. Plant Biotechnol 20(1):57–66

    Article  CAS  Google Scholar 

  • Jefferson RA, Kava TA, Bevan MW (1987) GUS fusion: β-glucuronidase, a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Joersbo M, Brunstedt J, Marcussen J, Okkels F (1999) Transformation of endospermous legume guar (Cyamopsis tetragonoloba L.) and analysis of transgene transmission. Mol Breed 5:521–529

    Article  CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Karthikeyan A, Shilpha J, Pandian SK, Ramesh M (2012) Agrobacterium-mediated transformation of indica rice cv. ADT 43. Plant Cell Tissue Organ Cult 109:153–165

    Article  CAS  Google Scholar 

  • Kiiya WW, Onyango RMA, Mwangi TK, Ngeny JMA (2002) Participatory verification of maize of maize varieties for lower, highland and upper midland transitional zones of North Rift Kenya. In: Proceedings of the 2nd scientific conference of the soil management and legume research network projects, Kenya, Mombasa, Kenya, June 2000

  • Kumar H (2002) Resistance in maize to larger grain borer, Prostephanus truncates (Horn) (Coleoptera: Bostrichidae). J Stored Prod Res 29(2):157–163

    Google Scholar 

  • Kumar V, Campbell LM, Rathore KS (2011) Rapid recovery-and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell Tissue Organ Cult 104:137–146

    Article  CAS  Google Scholar 

  • Kuta DD, Tripathi L (2005) Agrobacterium induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4(8):752–757

    CAS  Google Scholar 

  • Kuvshinov V, Anissimov A, Yahya BM (2004) Barnase gene inserted in the intron of GUS-a model for controlling transgene flow in host plants. Plant Sci 167:173–182

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Lupotto E, Conti E, Reali A, Lanzanova C, Baldoni E, Allegri L (2004) Improving in vitro culture and regeneration conditions for Agrobacterium-mediated maize transformation. Maydica 49:21–29

    Google Scholar 

  • Luppotto E, Reali A, Passera S, Chan MT (1999) Maize inbred lines are susceptible to Agrobacterium tumefaciens-mediated transformation. Maydica 44:211–218

    Google Scholar 

  • Mugo S, Hoisington D (2001) Biotechnology for the improvement of maize for resource poor farmers: the CIMMYT Approach. Second National Workshop of Ethiopia, 12–16 Nov 2000, pp 230

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mwangi PN, Ely A (2001) Assessing risks and benefits: Bt maize in Kenya. Biotechnol Dev Monitor 48:6–7

    Google Scholar 

  • Nam J, Mattysee AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from deficiency in T-DNA integration. Plant Cell 9:317–333

    PubMed  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selection marker to recover transgenic maize plants (Zea mays) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Ngugi K (2002) Maize projects implemented by NDFRC-Katumani. Biotechnology Trust Africa. Annual Report 1998–2000, Nairobi, Kenya, p 60

    Google Scholar 

  • O’Connor-Sánchez A, Cabrera-Ponce JL, Valdez-Melara M, Téllez-Rodríguez P, Pons-Hernández JL, Herrera-Estrella L (2002) Transgenic maize plants of tropical and subtropical genotypes obtained from callus containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep 21:302–312

    Article  Google Scholar 

  • Omwoyo O, Gitonga NM, Machuka J (2008) Plant regeneration via somatic embryogenesis of tropical maize (Zea mays L.) commercial hybrid lines. J Tropical Microbiol Biotechnol 4(1):24–31

    Google Scholar 

  • Opabode J (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1(1):12–20

    Google Scholar 

  • Organisation for Economic Cooperation and Development (OCED) (2007) Safety assessment of transgenic organisms. OCED consensus documents, 1:47

  • Pallota MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108

    Article  Google Scholar 

  • Pandey AK, Bhat BV, Balakrishna D, Seetharama N (2010) Genetic transformation of sorghum (Sorghum bicolar (L.) Moench.). Int J Biotechnol Biochem 6(1):45–53

    Google Scholar 

  • Rachmawati D, Anzai H (2006) Studies on callus induction, plant regeneration, transformation of Javanica rice cultivars. Plant Biotechnol 23:521–524

    Article  CAS  Google Scholar 

  • Rafiq M, Fatma T, Husnain T, Bashir K, Khan MA, Riazuddin S (2006) Regeneration, transformation of elite inbred line of maize (Zea mays L.), with a gene from Bacillus thuringiensis. S Afr J Bot 72(3):460–466

    Article  Google Scholar 

  • Ritchie SW, Lui CN, Sellmer JC, Kononowiz H, Hodges TK, Gelvin SB (1993) Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Transgenic Res 2:252–265

    Article  CAS  Google Scholar 

  • Rubio S, Jouve N, Gonzáles JM (2005) Biolistic and Agrobacterrium-mediated transient expression of UidA in triticale immature embryos. Czech J Genet Plant Breed 41:228–232

    Google Scholar 

  • Russell DA, Fromm ME (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res 692:157–168

    Article  Google Scholar 

  • Saharan V, Yadav RC, Yadv NR, Ram K (2004) Studies on improved Agrobacterium–mediated transformation in two indica rice (Orya sativa L.). Afr J Biotechnol 3(11):572–575

    CAS  Google Scholar 

  • Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, Wilber C, Sheikh H, Kashikar N, Meeker K, Al-Abed D, Berry K, Vierling R, Goldman SL (2003) Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 46:323–329

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tissue Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Shen WH, Escudero J, Hohn B (1999) T-DNA transfer into maize plants. Mol Biotechnol 13(2):165–169

    Article  PubMed  CAS  Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol 4:575–603

    Article  CAS  Google Scholar 

  • Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling derived maize callus. Plant Cell Rep 25:320–332

    Article  PubMed  CAS  Google Scholar 

  • Sinha G (2007) GM technology develops in the developing world. Science 315:182–183

    Article  PubMed  CAS  Google Scholar 

  • Song G, Walworth A, Hancock JF (2012) Factors affecting Agrobacterium-mediated transformation of switch grass cultivars. Plant Cell Tissue Organ Cult 108:445–453

    Article  CAS  Google Scholar 

  • Songstad DD, Armstrong CL, Peterson WL, Hairston B, Hinchee MAW (1996) Production of transgenic maize plants and progeny by bombardment of HiII immature embryos. In Vitro Cell Dev Biol Plant 32:179–183

    Article  Google Scholar 

  • Sticklen MB, Oraby H (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol Plant 41:187–200

    Article  CAS  Google Scholar 

  • Sudan C, Prakash S, Bhomkar P, Jain S, Bhalla-Sarin N (2006) Ubiquitous presence of β-glucuronidase (GUS) in plants and its regulation in some model plants. Planta 224:853–864

    Article  PubMed  CAS  Google Scholar 

  • Sujatha M, Vijay S, Vasavi S, Reddy PV, Rao SC (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tissue Organ Cult 110:275–287

    Article  Google Scholar 

  • Surekha C, Arundhati A (2007) Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. J Biol Sci 7(1):176–181

    Article  CAS  Google Scholar 

  • Taniguchi M, Izawa K, Ku MSB, Lin JH, Saito H, Ishida Y, Ohta S, Komari T, Matsuoka M, Sugiyama T (2000) The promoter for maize C4 pyruvate, orthophosphate dirkanase gene directs cell and tissue transcription in transgenic maize plants. Plant Cell Physiol 41:42–48

    Article  PubMed  CAS  Google Scholar 

  • Tie W, Zhou F, Wang L, Xie W, Chen H, Li X, Lin Y (2012) Reasons for lower transformation efficiency in Indica rice using Agrobacterium tumefaciens-mediated transformation. Lessons from transformation assays and genome wide expression profiling. Plant Mol Biol 78:1–18

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden S, Everett C, Snappe JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Valdez-Ortiz A, Merdina-Godoy S, Valverde ME, Paredes-López O (2007) A transgenic tropical maize line generated by the direct transformation of the embryo-scutellum by A. tumefaciens. Plant Cell Tissue Organ Cult 91:201–214

    Article  Google Scholar 

  • Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kronenburg B, Menzel T, Maliepaard C, Shen X, Krens F (2012) Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars. Plant Cell Tissue Organ Cult 111:113–122

    Article  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3(2):259–273

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Yang Q, Ji Q, Luo Y, Zhang Y, Gu K, Wang D (2007) Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using β-glucuronidase (GUS) as a reporter. Afr J Biotechnol 6(22):2578–2584

    CAS  Google Scholar 

  • Yang A, He C, Zhang K, Zhang J (2006) Improvement of Agrobacterium-mediated transformation of embryogenic callus from maize elite inbred lines. In Vitro Cell Dev Biol Plant 42:215–219

    Article  CAS  Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG (2000) At the maize-Agrobacterium interface: natural factors limiting host information. Chem Biol 7:611–621

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Williams-Carrier R, Lemau PG (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic culture from germinated seedlings. Plant Cell Rep 21:263–270

    Article  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong CP, Peschke V, Gilbertson L (2003) Cre/lox mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yin X, Yang A, Li G, Zhang J (2005) Stability of inheritance of transegenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144:11–22

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudent ML, Bruce WB, Pierce DA (1998) Molecular analysis of To plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72:34–37

    Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudent M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. K. Wang and Dr. J. Kumlehen for generously providing us with Agrobaterium strains. The authors are also thankful to students in the Plant Transformation Lab, Kenyatta University, Kenya for their technical assistance. This work was sponsored by Germany Exchange Service (DAAD) and Rockefeller Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omwoyo Ombori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ombori, O., Muoma, J.V.O. & Machuka, J. Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell Tiss Organ Cult 113, 11–23 (2013). https://doi.org/10.1007/s11240-012-0247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0247-1

Keywords

Navigation