Skip to main content
Log in

Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A highly efficient Agrobacterium-mediated transformation system for Lilium × formolongi was established by modifying the medium used for inoculation and co-cultivation. Meristematic nodular calli of Lilium were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm harboring an intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase, and neomycin phosphotransferase II genes. The effects of ten different types of media and carbohydrates (sucrose, d-glucose, and l-arabinose) in both inoculation and co-cultivation media were evaluated. Interestingly, a dramatic increase in the frequency of transformation (25.4%) was observed when Murashige and Skoog (MS) medium containing sucrose and lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used. Hygromycin-resistant transgenic calli were obtained only in medium supplemented with sucrose. The effects of this modified medium were also investigated for Lilium cultivars ‘Acapulco’, ‘Casa Blanca’, and ‘Red Ruby’. The highest frequency of transformation (23.3%) was obtained for cv. Acapulco. Hygromycin-resistant calli were successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were confirmed by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2a–c
Fig. 3a, b
Fig. 4

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

CTAB:

Cetyltrimethylammonium bromide

GUS:

β-glucuronidase

Hm:

Hygromycin

References

  • Ahn JH, Lee JS (2003) Sugar acts as a regulatory signal on the wound-inducible expression of SbHRGP3::GUS in transgenic plants. Plant Cell Rep 22:286–293

    Article  CAS  PubMed  Google Scholar 

  • Ahn BJ, Joung YH, Kamo KK (2004) Transgenic plants of Easter lily (Lilium longiflorum) with phosphinothricin resistance. J Plant Biotechnol 6:9–13

    Google Scholar 

  • Ankenbauer RG, Nester EW (1990) Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bacteriol 172:6442–6446

    CAS  PubMed  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host–microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Lipsky A, Arazi T, Ion A, Stav R, Sandler-Ziv D, Pintea C, Barg R, Salts Y, Shabtai S, Gaba V, Gera A (2004) Efficient genetic transformation of Lilium longiflorum and Ornithogalum dubium by particle acceleration followed by prolonged selection in liquid medium. Acta Hort 651:131–138

    CAS  Google Scholar 

  • Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR–PhoB regulatory system. J Bacteriol 186:4492–4501

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira R Machado L, de Andrade GM, Barreto Cid LP, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis × E. urophylla). Plant Cell Rep 16:299–303

    Google Scholar 

  • Dupré P, Lacoux J, Neutelings G, Mattar-Laurain D, Fliniaux MA, David A, Jacquin-Dubreuil A (2000) Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant 108:413–419

    Google Scholar 

  • Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET (1997) Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol Microbiol 25:831–838

    Article  CAS  PubMed  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224

    Article  CAS  Google Scholar 

  • Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22:359–364

    Article  CAS  PubMed  Google Scholar 

  • Irifune K, Morimoto Y, Uchihama M (2003) Production of herbicide resistant transgenic lily plants by particle bombardment. J Jpn Soc Hortic Sci 72:511–516

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kamo K, Han BH (2008) Biolistic-mediated transformation of Lilium longiflorum cv. Nellie White. Hortic Sci 43:1864–1869

    Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  CAS  PubMed  Google Scholar 

  • Mercuri A, Benedetti LD, Bruna S, Bregliano R, Bianchini C, Foglia G, Schiva T (2003) Agrobacterium-mediated transformation with rol genes of Lilium longiflorum Thunb. Acta Hort 612:129–136

    CAS  Google Scholar 

  • Mii M, Yuzawa Y, Suetomi H, Motegi T, Godo T (1994) Fertile plant regeneration from protoplasts of a seed-propagated cultivar of Lilium × formolongi by utilizing meristematic nodular cell clumps. Plant Sci 100:221–226

    Article  CAS  Google Scholar 

  • Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Ogaki M, Furuichi Y, Kuroda K, Chin DP, Ogawa Y, Mii M (2008) Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi. Plant Cell Rep 27:699–705

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Mii M (2007) Meropenem and moxalactam: novel β-lactam antibiotics for efficient Agrobacterium-mediated transformation. Plant Sci 172:564–572

    Article  CAS  Google Scholar 

  • Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG (2004) Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42:439–464

    Article  CAS  PubMed  Google Scholar 

  • Phelep M, Petit A, Martin L, Duhoux E, Tempé J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio/Technology 9:461–466

    Article  CAS  Google Scholar 

  • Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243

    Article  CAS  PubMed  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87:6684–6688

    Article  CAS  PubMed  Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–1454

    CAS  PubMed  Google Scholar 

  • Stomp AM (1992) Histochemical localization of β-glucuronidase. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 103–113

    Google Scholar 

  • Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep 16:26–31

    Article  CAS  Google Scholar 

  • Watad AA, Yun DJ, Matsumoto T, Niu X, Wu Y, Kononowicz AK, Bressan RA, Hasegawa PM (1998) Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep 17:262–267

    Article  CAS  Google Scholar 

  • Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438

    CAS  PubMed  Google Scholar 

  • Wise AA, Voinov L, Binns AN (2005) Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 187:213–223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadi, P., Chin, D.P., Kuroda, K. et al. Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium . Plant Cell Tiss Organ Cult 101, 201–209 (2010). https://doi.org/10.1007/s11240-010-9677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9677-9

Keywords

Navigation