Skip to main content
Log in

Homocysteine and methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in Tunisian patients with severe coronary artery disease

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Elevation in homocysteine and methylenetetrahydrofolate reductase (MTHFR) gene variants, C677T and A1298C, have been linked with atherothrombosis. However their exact contribution to coronary artery disease (CAD) remains controversial. Moreover, data from Tunisian patients are scarse. We examined the association of MTHFR C677T and A1298C, and changes in plasma homocysteine in 352 Tunisian patients with angiographically-demonstrated CAD, and 390 age and gender-matched healthy subjects. Significantly higher frequency of 677T allele and homozygous 677T/T genotype were seen in patients vs. control subjects; the distribution of A1298C alleles and genotypes being comparable in the two groups. Specific MTHFR haplotypes comprising 677C/1298A (P < 0.001) and 677T/1298A (P < 0.001) were negatively and positively associated with CAD, respectively. Plasma homocysteine concentration was significantly higher in 677T/T genotype with respect to 677C/C and 677C/T genotypes in patients and controls, but homocysteine levels were generally comparable between both groups. Univariate analysis identified 677T/1298A (P = 0.033) haplotype to be positively associated with CAD, which remained significant by multivariate analysis after adjusting for a number of covariates (P = 0.038). MTHFR C677T, but not A1298C SNPs, is associated with CAD and with elevated homocysteine levels in a Tunisian population. The negative and positive association of the 1298A allele with CAD being indicative of a neutral (absent) effect of the A1298C SNP on disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N EngI J Med 338:1042–1050

    Article  CAS  Google Scholar 

  2. Lentz SR (2005) Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 3:1646–1654

    Article  PubMed  CAS  Google Scholar 

  3. Quere I, Gris JC, Dauzat M (2005) Homocysteine and venous thrombosis. Semin Vasc Med 5:183–189

    Article  PubMed  Google Scholar 

  4. D’Angelo A, Mazzola G, Fermo I (2003) Gene-gene and gene-environment interactions in mild hyperhomocysteinemia. Pathophysiol Haemost Thromb 33:337–341

    Article  PubMed  Google Scholar 

  5. Balasa VV, Gruppo RA, Gartside PS, Kalinyak KA (1999) Correlation of the C677T MTHFR genotype with homocysteine levels in children with sickle cell disease. J Pediatr Hematol Oncol 21:397–400

    Article  PubMed  CAS  Google Scholar 

  6. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, Mendel M, Kidron M, Bar-On H (1999) A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr 129:1656–1661

    PubMed  CAS  Google Scholar 

  7. Friso S, Girelli D, Trabetti E, Stranieri C, Olivieri O, Tinazzi E, Martinelli N, Faccini G, Pignatti PF, Corrocher R (2002) A1298C methylenetetrahydrofolate reductase mutation and coronary artery disease: relationships with C677T polymorphism and homocysteine/folate metabolism. Clin Exp Med 2:7–12

    Article  PubMed  CAS  Google Scholar 

  8. Chango A, Boisson F, Barbé F, Quilliot D, Droesch S, Pfister M, Fillon-Emery N, Lambert D, Frémont S, Rosenblatt DS, Nicolas JP (2000) The effect of 677C→T and 1298A→C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. Br J Nutr 83:593–596

    Article  PubMed  CAS  Google Scholar 

  9. Schreiner PJ, Wu KK, Malinow MR, Stinson VL, Szklo M, Nieto FJ, Heiss G (2002) Hyperhomocyst[e]inemia and hemostatic factors: the atherosclerosis risk in communities study. Ann Epidemiol 12:228–236

    Article  PubMed  Google Scholar 

  10. Bennouar N, Allami A, Azeddoug H, Bendris A, Laraqui A, El Jaffali A, El Kadiri N, Benzidia R, Benomar A, Fellat S, Benomar M (2007) Thermolabile methylenetetrahydro-folate reductase C677T polymorphism and homocysteine are risk factors for coronary artery disease in Moroccan population. J Biomed Biotechnol 2007(1):80687

    PubMed  Google Scholar 

  11. Kerkeni M, Addad F, Chauffert M, Myara A, Gerhardt M, Chevenne D, Trivin F, Farhat MB, Miled A, Maaroufi K (2006) Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease. Ann Clin Biochem 43:200–206

    Article  PubMed  CAS  Google Scholar 

  12. Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG (2002) MTHFR Studies Collaboration Group. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288:2023–2031

    Article  PubMed  CAS  Google Scholar 

  13. Huh HJ, Chi HS, Shim EH, Jang S, Park CJ (2006) Gene–nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population. Thromb Res 117:501–506

    Article  PubMed  CAS  Google Scholar 

  14. Deloughery TG, Evans A, Sadeghi A, McWilliams J, Henner WD, Taylor LM Jr, Press RD (1996) Common mutation in methylenetetrahydrofolate reductase. Correlation with homocysteine metabolism and late-onset vascular disease. Circulation 94:3074–3078

    PubMed  CAS  Google Scholar 

  15. Koch W, Ndrepepa G, Mehilli J, Braun S, Burghartz M, Lengnick H, Kölling K, Schömig A, Kastrati A (2003) Homocysteine status and polymorphisms of methylenetetrahydrofolate reductase are not associated with restenosis after stenting in coronary arteries. Arterioscler Thromb Vasc Biol 23:2229–2234

    Article  PubMed  CAS  Google Scholar 

  16. Gueant-Rodriguez RM, Juilliere Y, Candito M, Adjalla CE, Gibelin P, Herbeth B, Van Obberghen E, Gueant JL (2005) Association of MTRRA66G polymorphism (but not of MTHFR C677T and A1298C, MTRA2756G, TCN C776G) with homocysteine and coronary artery disease in the French population. Thromb Haemost 94:510–515

    PubMed  CAS  Google Scholar 

  17. Laraqui A, Allami A, Carrie A, Raisonnier A, Coiffard AS, Benkouka F, Bendriss A, Benjouad A, Bennouar N, El Kadiri N, Benomar A, Fellat S, Benomar M (2007) Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. Eur J Intern Med 18:474–483

    Article  PubMed  CAS  Google Scholar 

  18. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  19. van der Put NM, Gabreels R, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051

    Article  PubMed  Google Scholar 

  20. Hawkins NM, Dunn FG (2006) The management of hypertension in ischaemic heart disease. Curr Opin Cardiol 21:273–278

    Article  PubMed  Google Scholar 

  21. Manrique CM, Lastra G, Palmer J, Stump CS, Sowers JR (2006) Hypertension—a treatable component of the cardiometabolic syndrome: challenges for the primary care physician. J Clin Hypertens (Greenwich) 8(1 Suppl 1):12–20

    Article  CAS  Google Scholar 

  22. DeFaria Yeh D, Freeman MW, Meigs JB, Grant RW (2007) Risk factors for coronary artery disease in patients with elevated high-density lipoprotein cholesterol. Am J Cardiol 99:1–4

    Article  PubMed  CAS  Google Scholar 

  23. Chwatko G, Jakubowski H (2005) Urinary excretion of homocysteine-thiolactone in humans. Clin Chem 51:408–415

    Article  PubMed  CAS  Google Scholar 

  24. van Guldener C, Stehouwer CD (2005) Homocysteine and methionine metabolism in renal failure. Semin Vasc Med 5:201–208

    Article  PubMed  Google Scholar 

  25. Kolling K, Ndrepepa G, Koch W, Braun S, Mehilli J, Schomig A, Kastrati A (2004) Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms, plasma homocysteine, folate, and vitamin B12 levels and the extent of coronary artery disease. Am J Cardiol 93:1201–1206

    Article  PubMed  CAS  Google Scholar 

  26. Yilmaz H, Isbir S, Agachan B, Ergen A, Farsak B, Isbir T (2006) C677T mutation of methylenetetrahydrofolate reductase gene and serum homocysteine levels in Turkish patients with coronary artery disease. Cell Biochem Funct 24:87–90

    Article  PubMed  CAS  Google Scholar 

  27. Guerzoni AR, Pavarino-Bertelli EC, Godoy MF, Graca CR, Biselli PM, Souza DR, Bertollo EM (2007) Methylenetetrahydrofolate reductase gene polymorphism and its association with coronary artery disease. Sao Paulo Med J 125:4–8

    Article  PubMed  Google Scholar 

  28. Brilakis ES, Berger PB, Ballman KV, Rozen R (2003) Methylenetetrahydrofolate reductase (MTHFR) 677C > T and methionine synthase reductase (MTRR) 66A > G polymorphisms: association with serum homocysteine and angiographic coronary artery disease in the era of flour products fortified with folic acid. Atherosclerosis 168:315–322

    Article  PubMed  CAS  Google Scholar 

  29. Garcia-Pinilla JM, Espinosa-Caliani S, Jimenez-Navarro M, Gomez-Doblas JJ, Cabrera-Bueno F, Reyes-Engel A, de Teresa-Galvan E (2007) Influence of 677 C→T polymorphism of methylenetetrahydrofolate reductase on medium-term prognosis after acute coronary syndromes. Tex Heart Inst J 34:142–147

    PubMed  Google Scholar 

  30. Szczeklik A, Sanak M, Jankowski M, Dropinski J, Czachor R, Musial J, Axenti I, Twardowska M, Brzostek T, Tendera M (2001) Mutation A1298C of methylenetetrahydrofolate reductase: risk for early coronary disease not associated with hyperhomocysteinemia. Am J Med Genet 101:36–39

    Article  PubMed  CAS  Google Scholar 

  31. Dhar M, Bellevue R, Brar S, Carmel R (2004) Mild hyperhomocysteinemia in adult patients with sickle cell disease: a common finding unrelated to folate and cobalamin status. Am J Hematol 76:114–120

    Article  PubMed  CAS  Google Scholar 

  32. Golbahar J, Fathi Z, Tamadon M (2005) Distribution of 5,10-methylenetetrahydrofolate reductase (C667T) polymorphism and its association with red blood cell 5-methyltetrahydrofolate in the healthy Iranians. Clin Nutr 24:83–87

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wassim Y. Almawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazouani, L., Abboud, N., Mtiraoui, N. et al. Homocysteine and methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in Tunisian patients with severe coronary artery disease. J Thromb Thrombolysis 27, 191–197 (2009). https://doi.org/10.1007/s11239-008-0194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-008-0194-1

Keywords

Navigation