Skip to main content
Log in

Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Different approaches to the development of promising photosensitizers based on polymethine dyes (PD) for photodynamic therapy are systematized, summarized, and analyzed. PD of the near-IR spectral range has drawn special attention. The influence of a heavy atom (chalcogens, halogens, and noble metals), the chromophore interaction, electron transfer, and free radicals on the singlet oxygen generation by PD is discussed. The PD photodynamic activity mechanisms under hypoxia conditions are considered. The PD structural modifications that ensure their targeted delivery to cancer cells are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. J. P. Celli, B. Q. Spring, I. Rizvi, et al., Chem. Rev., 110, No. 5, 2795-2838 (2010), https://doi.org/10.1021/cr900300p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Agostinis, K. Berg, K. A. Cengel, et al., CA Cancer J. Clin., 61, No. 4, 250-284 (2011), https://doi.org/10.3322/caac.20114.

    Article  PubMed  PubMed Central  Google Scholar 

  3. G. Gunaydin, M. E. Gedik, and S. Ayan, Front. Chem., 9, 686303 (2021), https://doi.org/10.3389/fchem.2021.686303.

  4. X. Li, S. Lee, and J. Yoon, Chem. Soc. Rev., 47, 1174-1188 (2018), https://doi.org/10.1039/c7cs00594f.

    Article  CAS  PubMed  Google Scholar 

  5. K. Bilici, S. Cetin, E. Celikbas, et al., Front. Chem., 9, 707876 (2021), https://doi.org/10.3389/fchem.2021.707876.

  6. X. Zhao, J. Liu, J. Fan, et al., Chem. Soc. Rev., 50, 4175-4219 (2021), https://doi.org/10.1039/d0cs00173b.

    Article  CAS  Google Scholar 

  7. A. Krasnovsky, Photodynamic Therapy At The Cellular Level, A. B. Uzdensky (Ed.), Research Signpost, Trivandrum-695 023, 17-62 (2007).

  8. S. K. Sharma, P. Mroz, T. Dai, et al., Isr. J. Chem., 52, Nos. 8-9, 691-705 (2012), https://doi.org/10.1002/ijch.201100062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. R. Buettner, Arch. Biochem. Biophys., 300, No. 2, 535-543 (1993), https://doi.org/10.1006/abbi.1993.1074.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Vakrat-Haglili, L. Weiner, V. Brumfeld, et al., J. Am. Chem. Soc., 127, No. 17, 6487-6497 (2005), .https://doi.org/10.1021/ja046210j.

    Article  CAS  PubMed  Google Scholar 

  11. A. A. Krasnovsky, A. S. Kozlov, and Y. V. Roumbal, Photochem. Photobiol. Sci., 11, No. 6, 998-997 (2012), https://doi.org/10.1039/c2pp05350k.

    Article  CAS  Google Scholar 

  12. M. Hayyan, M. A. Hashim, and I. M. AlNashef, Chem. Rev., 116, 3029-3085 (2016), https://doi.org/10.1021/acs.chemrev.5b00407.

    Article  CAS  PubMed  Google Scholar 

  13. D. E. Dolmans, D. Fukumura, and R. K. Jain, Nat. Rev. Cancer, 3, No. 5, 380-387 (2003), https://doi.org/10.1038/nrc1071.

    Article  CAS  PubMed  Google Scholar 

  14. V. Mashayekhi, S. Oliveira, and D. J. Robinson, Cancers, 9, No. 2, 19 (2017), https://doi.org/10.3390/cancers9020019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Juarranz, P. Jaen, F. Sanz-Rodriguez, J. Cuevas, et al., Clin. Transl. Oncol., 10, No. 3, 148-154 (2008), https://doi.org/10.1007/s12094-008-0172-2.

    Article  CAS  PubMed  Google Scholar 

  16. D. W. Felsher, Nat. Rev. Cancer, 3, No. 5, 375-380 (2003), https://doi.org/10.1038/nrc1070.

    Article  CAS  PubMed  Google Scholar 

  17. R. R. Allison and C. H. Sibata, Photodiagnosis Photodyn Ther., 7, No. 2, 61-75 (2010), https://doi.org/10.1016/j.pdpdt.2010.02.001.

    Article  CAS  PubMed  Google Scholar 

  18. W. Fan, P. Huang, and X. Chen, Chem. Soc. Rev., 45, 6488—6519 (2016), https://doi.org/10.1039/c6cs00616g.

    Article  CAS  PubMed  Google Scholar 

  19. N. Kotagiri, G. P. Sudlow, W. J. Akers, and S. Achilefu, Nat. Nanotechnol., 10, No. 4, 370-379 (2015), https://doi.org/10.1038/nnano.2015.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. B. Li, H. Lin, D. Chen, et al., J. Innov. Opt. Health Sci., 6, No. 1, 1330002-1330011 (2013), https://doi.org/10.1142/S1793545813300024.

    Article  CAS  Google Scholar 

  21. G. Saravanakumar, J. Kim, and W. Kim, Adv. Sci., 4, 1600124-1600153 (2017), https://doi.org/10.1002/advs.201600124.

    Article  CAS  Google Scholar 

  22. H. Liu, P. Carter, A. Laan, et al., Sci. Rep., 9, 8393-8401 (2019), https://doi.org/10.1038/s41598-019-44880-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. M. Byteva and G. P. Gurinovich, J. Lumin., 21, No. 1, 17-20 (1979), https://doi.org/10.1016/0022-2313(79)90031-0.

    Article  CAS  Google Scholar 

  24. K. I. Salokhiddinov, B. M. Dzhagarov, I. M. Byteva, and G. P. Gurinovich, Chem. Phys. Lett., 76, No. 1, 85-87 (1980), https://doi.org/10.1016/0009-2614(80)80609-9.

    Article  CAS  Google Scholar 

  25. R. Dedic, A. Svoboda, J. Psrenek, et al., J. Lumin., 102-103, 313-317 (2003), https://doi.org/10.1016/S0022-2313(02)00524-0.

    Article  CAS  Google Scholar 

  26. A. Jr. Krasnovsky, J. Photochem. Photobiol. A., 196, Nos. 2-3, 210-218 (2007), https://doi.org/10.1016/_j.jphotochem.2007.12.015.

  27. K. I. Salokhiddinov and I. M. Byteva, Opt. Spectrosc., 55, 479-482 (1983).

    CAS  Google Scholar 

  28. M. P. Samtsov, E. S. Voropai, K. N. Kaplevskii, and D. G. Mel’nikov, J. Appl. Spectrosc., 75, 692-699 (2008), https://doi.org/10.1007/s10812-008-9102-x.

  29. S. Hatz, J. Lambert, and P. Ogilby, Photochem. Photobiol. Sci., 6, 1106-1116 (2007), https://doi.org/10.1039/b707313e.

    Article  CAS  PubMed  Google Scholar 

  30. S. Kim, M. Fujitsuka, and T. Majima, J. Phys. Chem. B., 117, No. 45, 13985-13992 (2013), https://doi.org/10.1021/jp406638g.

    Article  CAS  PubMed  Google Scholar 

  31. G. Yang, X. Sun, J. Liu, et al., Adv. Funct. Mat., 26, No. 26, 4722-4732 (2016), https://doi.org/10.1002/adfm.201600722.

    Article  CAS  Google Scholar 

  32. B. Daly, J. Jue Linga, and A. Prasanna de Silva, Chem. Soc. Rev., 44, 4203-4211 (2015), https://doi.org/10.1039/C4CS00334A.

  33. J. S. Nam, M.-G. Kang, J. Kang, et al., J. Am. Chem. Soc., 138, 10968-10977 (2016), https://doi.org/10.1021/jacs.6b05302.

    Article  CAS  PubMed  Google Scholar 

  34. K. Kundu, S. F. Knight, N. Willett, et al., Angew Chem. Int. Ed. Engl., 48, No. 2, 299-303 (2009), https://doi.org/10.1002/anie.200804851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Ishchenko, Russ. Chem. Rev., 60, No. 8, 865-884 (1991), https://doi.org/10.1070/rc1991v060n08abeh001116.

    Article  Google Scholar 

  36. H. Mustroph, Phys. Sci. Rev., 5, No. 5, 1-24 (2020), https://doi.org/10.1515/psr-2019-0145

    Article  Google Scholar 

  37. T. Entradas, S. Waldron, and M. Volk, J. Photochem. Photobiol. B., 204, 111787 (2020), https://doi.org/10.1016/j.jphotobiol.2020.111787.

  38. S. O. Marilene, D. Severino, F. M. Prado, et al., Photochem. Photobiol. Sci., 10, 1546-1555 (2011), https://doi.org/10.1039/c1pp05120b.

    Article  CAS  Google Scholar 

  39. J. C. V. P. Moura, A. M.F. Oliveira-Capos, and J. Griffiths, Dyes Pigm., 33, No. 3, 173-196 (1997), https://doi.org/10.1016/S0143-7208(96)00050-2.

    Article  CAS  Google Scholar 

  40. B. C. Wilson, Ciba Found. Symp., 146, 60-73 (1989), https://doi.org/10.1002/9780470513842.ch5.

    Article  CAS  PubMed  Google Scholar 

  41. E. S. Nyman and P. H. Hynninen, J. Photochem. Photobiol. B., 73, Nos. 1-2, 1-28 (2004). https://doi.org/10.1016/j.jphotobiol.2003.10.002.

    Article  CAS  PubMed  Google Scholar 

  42. R. R. Allison and C. H. Sibata, Photodiagnosis Photodyn Ther., 5, No. 2, 247-250 (2008), https://doi.org/10.1016/j.pdpdt.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  43. E. V. Yaroslavtseva-Isaeva, M. A. Kaplan, V. N. Kapinus, et al., Biomed. Photon, 7, No. 1, 13-20 (2018), https://doi.org/10.24931/2413-9432-2018-7-1-13-20.

    Article  Google Scholar 

  44. H. Kato, M. Harada, S. Ichinose, et al., Photodiagn Photodyn Ther., 1, No. 1, 49-55 (2004), https://doi.org/10.1016/S1572-1000(04)00008-0.

    Article  CAS  Google Scholar 

  45. B. C. Wilson and M. S. Patterson, Phys. Med. Biol., 53, No. 9, 61-109 (2008), https://doi.org/10.1088/0031-9155/53/9/R01.

    Article  CAS  Google Scholar 

  46. S. B. Brown, E. A. Brown, I. Walker, et al., Lancet. Oncol., 5, No. 8, 497-508 (2004), https://doi.org/10.1016/S1470-2045(04)01529-3.

    Article  CAS  PubMed  Google Scholar 

  47. X. Li, S. Lee, and J. Yoon, Chem. Soc. Rev., 47, 1174-1188 (2018), https://doi.org/10.1039/c7cs00594f.

    Article  CAS  PubMed  Google Scholar 

  48. X. Zhao, J. Liu, J. Fan, et al., Chem. Soc. Rev., 50, 4150-4219 (2021), https://doi.org/10.1039/d0cs00173b.

    Article  CAS  Google Scholar 

  49. J. Ge, M. Lan, B. Zhou, et al., Nat. Commun., 5, 4596 (2014), https://doi.org/10.1038/ncomms5596.

    Article  CAS  PubMed  Google Scholar 

  50. H. F. Dvorak, Prog. Clin. Biol. Res., 354A, 317-330 (1990).

    CAS  PubMed  Google Scholar 

  51. J. Moan, B. Cunderlikova, A. Juzeniene, et al., Targeted Cancer Therapies - An Odyssey. Proc. Tromso Symp., 2003, O. S. Bruland., T. Flsgstad., Ravnetrykk (Eds.) (No. 29), 208-213 (2003).

  52. M. Korbelik, G. Krosl, P. L. Olive, et al., Br. J. Cancer, 64, No. 3, 508-512 (1991), https://doi.org/10.1038/bjc.1991.339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L. E. Gerweck, Drug Resist. Updat., 3, No. 1, 49-50 (2000), https://doi.org/10.1054/drup.2000.0122.

    Article  PubMed  Google Scholar 

  54. J. Kou, D. Dou, and L. Yang, Oncotarget., 8, No. 46, 81591-81603 (2017), https://doi.org/10.18632/oncotarget.20189.

    Article  PubMed  PubMed Central  Google Scholar 

  55. J. J. Chen, L. J. Gao, and T. J. Liu, Oncol. Lett., 11, No. 1, 775-781 (2016), https://doi.org/10.3892/ol.2015.3953.

    Article  CAS  PubMed  Google Scholar 

  56. J. Jiao, J. He, M. Li, et. al., Nanoscale, 4, 6373-6383 (2022), https://doi.org/10.1039/D1NR08293K.

    Article  Google Scholar 

  57. R. R. Allison, V. S. Bagnato, R. Cuenca, et al., Future Oncol., 2, No. 1, 53-71 (2006), https://doi.org/10.2217/14796694.2.1.53.

    Article  CAS  PubMed  Google Scholar 

  58. D. A. Bellnier, W. R. Greco, G. M. Loewen, et al., Cancer Res., 63, 1806-1813 (2003).

    CAS  PubMed  Google Scholar 

  59. S. Moriwaki, J. Misawa, Y. Yoshinari, et al., Photodermatol. Photoimmunol. Photomed., 17, 241-243 (2001), https://doi.org/10.1111/j.1600-0781.2001.170507.x.

    Article  CAS  PubMed  Google Scholar 

  60. D. Shang, O. Yu, W. Liuet, et al., Sci. China Mater., 65, No. 2, 527-535 (2022), https://doi.org/10.1007/s40843-021-1759-6.

    Article  CAS  Google Scholar 

  61. M. W. Lee, D. L. Lee, W. N. Yen, and C. Y. Yeh, Pure Appl. Chem., 46, 730-737 (2009), https://doi.org/10.1080/10601320902938558.

    Article  CAS  Google Scholar 

  62. A. I. Tolmachev, Yu. L. Slominskii, A. A. Ishchenko, et al., Kluwer Academic Publishers, 52, 385-415 (1998), https://doi.org/10.1007/978-94-011-5102-3_19.

    Article  CAS  Google Scholar 

  63. J. L. Bricks, A. D. Kachkovskii, Yu. L. Slominskii, et al., Dyes Pigm., 121, 238-255 (2015), https://doi.org/10.10167j.dyepig.2015.05.016.

  64. V. Polishchuk, M. Filatova, E. Rusanov, et al., Chem. Eur. J., 28, No. 70, e202202168 (2022), https://doi.org/10.1002/chem.202202168.

  65. I. V. Kurdyukova, A. A. Ishchenko, M. V. Bogdanovich, et al., Mater. Today: Proc., 62, 7670-7676 (2022), https://doi.org/10.1016/j.matpr.2022.03.004.

    Article  CAS  Google Scholar 

  66. V. Voiciuk, K. Redeckas, N. Derevyanko, et al., Dyes Pigm., 109, 120-126 (2014), https://doi.org/10.1016/j.dyepig.2014.05.012.

    Article  CAS  Google Scholar 

  67. A. Kulinich, A. Ishchenko, et al., J. Photochem. Photobiol. A., 274, 91-97 (2014), https://doi.org/10.10167j.jphotochem.2013.09.016.

  68. K. Redeckas, V. Voiciuk, A. Ishchenko, and M. Vengris, Lith. J. Phys., 58, No. 4, 346-357 (2018), https://doi.org/10.3952/physics.v58i4.3879.

    Article  Google Scholar 

  69. A. A. Ishchenko, M. V. Kurdyukova, M. V. Bogdanovich, et al., Opt. Spectrosc., 129, No. 8, 926-934 (2021), https://doi.org/10.1134/S0030400X21070080.

    Article  CAS  Google Scholar 

  70. F. Ruttger, S. Mindt, C. Golz, et al., Eur. J. Org. Chem., 30, 4791-4796 (2019), https://doi.org/10.1002/ejoc.201900715.

    Article  CAS  Google Scholar 

  71. L. Li, Y. Chen, W. Chen, et al. // Chin. Chem. Lett., 30, 1689-1703 (2019), https://doi.org/10.1016/j.cclet.2019.04.017.

  72. J. Cao, J. Chi, J. Xia, et al., ACS Appl. Mater. Interfaces, 11, No. 29, 25720-25729 (2019), https://doi.org/10.1021/acsami.9b07694.

    Article  CAS  PubMed  Google Scholar 

  73. J. Atchison, S. Kamila, H. Nesbitt, et al., Chem. Commun., 53, No. 12, 2009-2012 (2017), https://doi.org/10.1039/c6cc09624g.

    Article  CAS  Google Scholar 

  74. D. G. Devi, T. R. Cibin, and A. Abraham, Photodiagnosis Photodyn. Ther., 10, No. 4, 510-517 (2013), https://doi.org/10.1016/j.pdpdt.2013.04.005.

    Article  CAS  PubMed  Google Scholar 

  75. F. Mandim, V. C. Graca, R. C. Calhelha, et al., Molecules, 24, No. 5, 863 (2019), https://doi.org/10.3390/molecules24050863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. X. Zhang, Z. Wang, Y. Hou, et al., J. Mater. Chem. C., 9, 11944-11973 (2021), https://doi.org/10.1039/D1TC02535J.

    Article  CAS  Google Scholar 

  77. J. Sun, E. Feng, Y. Shao, et al., Chembiochem., 23, No. 22, e202200421 (2022), https://doi.org/10.1002/cbic.202200421.

  78. M. R. Detty and P. B. Merkel, J. Amer. Chem. Soc., 112, No. 10, 3845-3855 (1990), https://doi.org/10.1021/ja00166a019.

    Article  CAS  Google Scholar 

  79. A. A. Ishchenko, N. A. Derevyanko, V. M. Zubarovskii, et al., Theor. Exp. Chem., 20, No. 4, 415-422 (1984), https://doi.org/10.1007/BF00516576.

    Article  Google Scholar 

  80. X. Yi, F. Yan, F. Wang, et al., Med Sci Monit., 21, 511-517 (2015), https://doi.org/10.12659/MSM.892437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. J. T. Alander, I. Kaartinen, A. Laakso, et al., Int. J. Biomed. Imaging, 2012, 1-26 (2012), https://doi.org/10.1155/2012/940585.

    Article  CAS  Google Scholar 

  82. Z. Feng, X. Yu, M. Jiang, et al., Theranostics, 9, No. 19, 5706-5719 (2019), https://doi.org/10.7150/thno.31332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. P. Bhattarai and Z. Dai, Adv. Healthcare Mater., 6, 1700262 (2017), https://doi.org/10.1002/adhm.201700262.

    Article  CAS  Google Scholar 

  84. P. Li, Y. Liu, W. Liu, et al., Int. J. Oncol., 55, 415-424 (2019), https://doi.org/10.3892/ijo.2019.4821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. J. A. Cardillo, R. Jorge, R. Costa, et al., Br. J. Ophthalmol., 92, 276-280 (2008), https://doi.org/10.1136/bjo.2007.129395.

    Article  CAS  PubMed  Google Scholar 

  86. J. Chen, X. Tan, S. Luo, et al., J. Innov. Opt. Health Sci., 11, No. 4, 1850016 (2018), https://doi.org/10.1142/S1793545818500165.

    Article  CAS  Google Scholar 

  87. H. Liu, J. Yin, E. Xing, et al., Dyes Pigm., 190, 109327 (2021), https://doi.org/10.1016/j.dyepig.2021.109327.

  88. B. Ciubini, S. Visentin, L. Serpe, et al., Dyes Pigm., 160, 806-813 (2019), https://doi.org/10.1016/j.dyepig.2018.09.009.

    Article  CAS  Google Scholar 

  89. R. R. Avirah, D. T. Jayaram, N. Adarsh, et al., Org. Biomol. Chem., 10, 911-920 (2012), https://doi.org/10.1039/C1OB06588B.

    Article  CAS  PubMed  Google Scholar 

  90. E. Lima, J. F. Silva, A. O. Santos, et al., Dyes Pigm., 174, 108024 (2020), https://doi.org/10.1016/j.dyepig.2019.108024.

  91. A. F. Magalhaes, V. C. Graca, R. C. Calhelha, et al., Photochem. Photobiol. Sci., 18, 336-342 (2019), https://doi.org/10.1039/C8PP00201K.

    Article  CAS  PubMed  Google Scholar 

  92. L. Serpe, S. Ellena, N. Barbero, et al., Eur. J. Med. Chem., 113, 187-197 (2016), https://doi.org/10.1016/j.ejmech.2016.02.035.

    Article  CAS  PubMed  Google Scholar 

  93. A. F. Magalhaes, V. C. Graca, R. C. Calhelha, et al.,Bioorganic Med. Chem. Lett., 27, 4467-4470 (2017), https://doi.org/10.1016/j.bmcl.2017.08.004.

  94. S. Khopkar and G. Shankarling, Dyes Pigm., 170, 107645 (2019), https://doi.org/10.1016/j.dyepig.2019.107645.

  95. K. Ilina, W. MacCuaig, M. Laramie, et al., Bioconjugate Chem., 31, 194-213 (2020), https://doi.org/10.1021/acs.bioconjchem.9b00482.

  96. I. V. Kurdiukova, A. V. Kulinich, and A. A. Ishchenko, New J. Chem., 34, No. 8, 1564-1567 (2012), https://doi.org/10.1039/c2nj40303j.

    Article  CAS  Google Scholar 

  97. M. P. Shandura, Ye. M. Poronik, Yu. P. Kovtun, and A. A. Ishchenko, Dyes Pigm., 77, No. 2, 369-373 (2008), 10.1016Zj.dyepig.2007.06.007.

  98. Z. Li, P. Zhao, S. Tofighi, et al., J. Phys. Chem. C., 120, 15378-15384 (2016), https://doi.org/10.1021/acs.jpcc.6b03037.

    Article  CAS  Google Scholar 

  99. M. I. Demchuk, A. A. Ishchenko, Zh. A. Krasnaya, and V. P. Mikhailov, Chem. Phys. Lett., 167, Nos. 1-2, 170-174 (1990), https://doi.org/10.1016/0009-2614(90)85090-Y.

    Article  CAS  Google Scholar 

  100. A. S. Tatikolov, Kh. S. Dzhulibekov, Zh. A. Krasnaya, et al.,Russ Chem. Bull., 41, No. 11, 1985-1991 (1992), https://doi.org/10.1007/BF00863360.

  101. B. Jin, X. Zhang, W. Zheng, et al., Anal. Chem., 86, No. 14, 7063-7070 (2014), https://doi.org/10.1021/ac501619v.

    Article  CAS  PubMed  Google Scholar 

  102. Y. Wei, X. Hu, L. Shen, et al., EBioMedicine, 23, 25-33 (2017), https://doi.org/10.1016/j.ebiom.2017.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. D. Peceli, H. Hu, D. Fishman, et al., J. Phys. Chem. A., 117, 2333-2346 (2013), https://doi.org/10.1021/jp400276g.

    Article  CAS  PubMed  Google Scholar 

  104. D. Ramaiaht, A. Joy, N. Chandrasekhar, et al., Photochem. Photobiol., 65, No. 5, 783-790 (1997), https://doi.org/10.1111/j.1751-1097.1997.tb01925.x.

    Article  Google Scholar 

  105. L. Xu, Y.-Y. Wang, J. Huang, et al., Theranostics, 10, No. 20, 8996-9031 (2020), https://doi.org/10.7150/thno.45413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. X. Hu, Y. Zhang, T. Ding, et al., Front. Bioeng. Biotechnol., 8, 990, 1-17 (2020), https://doi.org/10.3389/fbioe.2020.00990.

  107. A. Abed, M. Derakhshan, M. Karimi, et al., Front. Pharmacol., 13, 797804-797827 (2022), https://doi.org/10.3389/fphar.2022.797804/full.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. A. K. Aimukhanov, N. Kh. Ibrayev, A. A. Ishchenko, and A. V. Kulinich, Theor. Exp. Chem., 54, No. 6, 369-374 (2019), https://doi.org/10.1007/s11237-019-09602-9.

    Article  CAS  Google Scholar 

  109. N. Ibrayev, A. Ishchenko, D. Afanasyev, and N. Zhumabay, Appl. Phys. B., 125, No. 9, 182-189 (2019), https://doi.org/10.1007/s00340-019-7292-y.

    Article  CAS  Google Scholar 

  110. E. Seliverstova, N. Ibrayev, G. Omarova, et al., J. Lumin., 235, 118000, 1-7 (2021), https://doi.org/10.1016/j.jlumin.2021.118000.

    Article  CAS  Google Scholar 

  111. N. Ibrayev, E. Seliverstova, D. Temirbayeva, and A. Ishchenko, J. Luminescence, 251, 119203, 1-8 (2022), https://doi.org/10.1016/j.jlumin.2022.119203.

    Article  CAS  Google Scholar 

  112. D.-H. Li and B. D. Smith, Eur. J. Chem., 27, 14535-14542 (2021), https://doi.org/10.1002/chem.202102816.

    Article  CAS  Google Scholar 

  113. W. S. Kuo, Y. T. Chang, K. C. Cho, et al., Biomaterials, 33, No. 11, 3270-3278 (2012), https://doi.org/10.10167j.biomaterials.2012.01.035.

  114. K. Mitra, C. E. Lyons, C. T. Hartman, et al., Angew. Chem. Intr., 57, No. 32, 10263-10267 (2018), https://doi.org/10.1002/anie.201806911.

    Article  CAS  Google Scholar 

  115. M. Koushambi, Dalton Trans., 45, No. 48, 19157-19171 (2016), https://doi.org/10.1039/c6dt03665a.

    Article  Google Scholar 

  116. C. Shi, J. B. Wu, and D. Pan, J. Biomed. Opt., 21, No. 5, 050901 (2016), https://doi.org/10.1117/1.JBO.21.5.050901.

  117. A. V. Kulinich and A. A. Ishchenko, Russ. Chem. Rev., 78, No. 2, 141-164 (2009), https://doi.org/10.1070/rc2009v078n02abeh003900.

    Article  CAS  Google Scholar 

  118. S. Yang, H. Tian, H. Xiao, et al., Dyes Pigm., 49, 93-10 (2001), https://doi.org/10.1016/S0143-7208(01)00012-2.

    Article  CAS  Google Scholar 

  119. A. V. Kulinich, N. A. Derevyanko, A. A. Ishchenko, et al., Dyes Pigm., 161, 24-33 (2019), https://doi.org/10.1016/j.dyepig.2018.09.031.

    Article  CAS  Google Scholar 

  120. T. Itoh, H. A. Messner, N. Jamal, et al., Bone Marrow Transplant, 12, 191-196, PMID: 8241975 (1993).

  121. S. D’Alessandro and R. Priefer, J. Drug Deliv. Sci. Technol., 60, 101979 (2020), https://doi.org/10.1016/j.jddst.2020.101979.

  122. A. V. Kulinich, E. K. Mikitenko, and A. A. Ishchenko, Phys. Chem. Chem. Phys., 18, No. 5, 3444-3453 (2016), https://doi.org/10.1039/c5cp06653k.

    Article  CAS  PubMed  Google Scholar 

  123. A. V. Kulinich, V. V. Kurdyukov, and A. A. Ishchenko, New J. Chem., 43, No. 19, 7379-7385 (2019), https://doi.org/10.1039/C9NJ00831D.

    Article  CAS  Google Scholar 

  124. N. A. Derevyanko, A. A. Ishchenko, and A. V. Kulinich, Phys. Chem. Chem. Phys., 22, No. 5, 2748-2762 (2020), https://doi.org/10.1039/C9CP05827C.

    Article  CAS  PubMed  Google Scholar 

  125. M. Zareba, M. Niziolek, W. Korytowski, and A. W. Girotti, Biochim. Biophys. Acta., 1722, No. 1, 51-59 (2005), https://doi.org/10.1016/j.bbagen.2004.11.007.

    Article  CAS  PubMed  Google Scholar 

  126. J.-F. Xiang, Y.-X. Liu, D. Sun, et al., Dyes Pigm., 93, No. 1-3, 1481-1487 (2012), https://doi.org/10.1016/j.dyepig.2011.10.017.

    Article  CAS  Google Scholar 

  127. H.-Y. Lin, C.-T. Chen, and C.-T. Huang, Appl. Environ. Microbiol., 70, 6453-6458 (2004), https://doi.org/10.1128/AEM.70.11.6453-6458.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. L. Lum, M. Yamagami, B. Giddings, et al., Blood, 77, No. 12, 2701-2706, PMID: 1646046 (1991).

  129. D. L. Traul and F. Sieber, J. Photochem. Photobiol. B., 153, 153-163 (2015), https://doi.org/10.1016/j.jphotobiol.2015.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. X. Zhang, Z. Wang, Y. Hou, et al., J. Mater. Chem., 9, 11944-11973 (2021), https://doi.org/10.1039/D1TC02535J.

    Article  CAS  Google Scholar 

  131. J. Miao, Y. Huo, G. Yao, et al., Angew. Chem. Int. Ed., 61, No. 25, e202201815 (2022), https://doi.org/10.1002/anie.202201815.

  132. X. Yang, J. Bai, and Y. Qian, Spectrochim. Acta A., 228, 117702 (2020), https://doi.org/10.1016/j.saa.2019.117702.

  133. L. Jiao, F. Song, J. Cui, and X. Peng, Chem. Commun., 54, No. 66, 9108-9201 (2018), https://doi.org/10.1039/c8cc04582h.

    Article  CAS  Google Scholar 

  134. Z. Wang, J. Zhao, A. Barbon, et al., J. Am. Chem. Soc., 139, 7831-7842 (2017), https://doi.org/10.1021/jacs.7b02063.

    Article  CAS  PubMed  Google Scholar 

  135. B. K. Hughes, W. A. Braunecker, A. J. Ferguson, et al., J. Phys. Chem. B., 118, No. 43, 12541-12548 (2014), https://doi.org/10.1021/jp506240j.

    Article  CAS  PubMed  Google Scholar 

  136. X. Guo, X. Li, X.-Ch. Liu, et al., Chem. Commun., 54, 845-848 (2018), https://doi.org/10.1039/C7CC09383G.

    Article  CAS  Google Scholar 

  137. X. Peng, F. Song, E. Lu, et al., J. Am. Chem. Soc., 127, No. 12, 4170-4171 (2005), https://doi.org/10.1021/ja043413z.

    Article  CAS  PubMed  Google Scholar 

  138. A. C. Benniston, A. Harriman, P. Li, et al., J. Am. Chem. Soc., 127, No. 46, 16054-16064 (2005), https://doi.org/10.1021/ja052967e.

    Article  CAS  PubMed  Google Scholar 

  139. A. Harriman, L. J. Mallon, G. Ulrich, and R. Ziessel, ChemPhysChem., 8, No. 8, 1207-1214 (2007), https://doi.org/10.1002/cphc.200700060.

    Article  CAS  PubMed  Google Scholar 

  140. J. B. Jarman and D. A. Dougherty, Chem. Commun., 55, No. 38, 5511-5514 (2019), https://doi.org/10.1039/C9CC01096C.

    Article  CAS  Google Scholar 

  141. M. V. Bogdanovich, S. L. Bondarev, V. N. Dudikov, et al., Optik., 245, 167634-167640 (2021), https://doi.org/10.1016/j.ijleo.2021.167634.

    Article  CAS  Google Scholar 

  142. A. A. Ishchenko, I. L. Mushkalo, N. A. Derevyanko, et al., J. Inf. Rec., 17, No. 1, 39-51 (1989).

    CAS  Google Scholar 

  143. S. A. Yeroshina, N. Kh. Ibrayev, and A. A. Ishchenko, Atmos. Ocean. Opt., Nos. 2-3, 207 (2006).

  144. N. Kh. Ibraev, A. A. Ishchenko, R. Kh. Karamysheva, and I. L. Mushkalo, J. Lumin., 19, Nos. 3-4, 81-88 (2000), https://doi.org/10.1016/S0022-2313(99)00616-X.

    Article  Google Scholar 

  145. E. R. Silva, A. L. S. Pavanelli, L. B. Mostaço, et al., J. Photochem. Photobiol., 349, 42-48 (2017), https://doi.org/10.1016/j.jphotochem.2017.08.063.

    Article  CAS  Google Scholar 

  146. A. A. Kostyukov, T. D. Nekipelova, A. S. Radchenko, et al., High Energy Chem., 51, No. 2, 148-150 (2017), https://doi.org/10.1134/s0018143917020072.

    Article  CAS  Google Scholar 

  147. A. A. Kostyukov, N. V. Pozdnyakova, A. B. Shevelev, et al., High Energy Chem., 51, 233-235 (2017), https://doi.org/10.1134/S0018143917030067.

    Article  CAS  Google Scholar 

  148. A. S. Radchenko, A. A. Kostyukov, A. A. Markova, et al., Photochem. Photobiol. Sci., 18, No. 10, 2461-2468 (2019), https://doi.org/10.1039/c9pp00241c.

    Article  CAS  PubMed  Google Scholar 

  149. K. M. Wasan, D. R. Brocks, S. D. Lee, et al., Nat. Rev. Drug Discov., 7, 84-99 (2008), https://doi.org/10.1038/nrd2353.

    Article  CAS  PubMed  Google Scholar 

  150. X. Meng, Y. Yang, L. Zhou, et al., Theranostics, 7, No. 7, 1781-1794 (2017), https://doi.org/10.7150/thno.18437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science + Business Media, New York (2006).

  152. Y. P. Istomin, E. N. Alexandrova, E. A. Zhavrid, et al., Exp Oncol., 28, No. 1, 80-82, PMID: 16614714 (2006).

  153. M. Li, J. Xia, R. Tian, et al., J. Am. Chem. Soc., 140, 14851-14859 (2018), https://doi.org/10.1021/jacs.8b08658.

    Article  CAS  PubMed  Google Scholar 

  154. H. Huang, S. Banerjee, K. Qiu, et al., Nat Chem., 11, 1041-1048 (2019), https://doi.org/10.1038/s41557-019-0328-4.

    Article  CAS  PubMed  Google Scholar 

  155. N. Campillo, B. Falcones, J. Otero, et al., Front. Oncol., 9, No. 43 (2019), https://doi.org/10.3389/fonc.2019.00043.

  156. A. A. Ishchenko, Theor. Exp. Chem., 34, No. 4, 191-210 (1998), https://doi.org/10.1007/BF02523249.

    Article  CAS  Google Scholar 

  157. G. P. Grabchuk, N. A. Derevyanko, and A. A. Ishchenko, Russ. J. Appl. Chem., 86, No. 5, 739-746 (2013), https://doi.org/10.1134/s1070427213050212.

    Article  CAS  Google Scholar 

  158. N. A. Davidenko and A. A. Ishchenko, Theor. Exp. Chem., 38, No. 2, 88-108 (2002), https://doi.org/10.1023/A:1016088000862.

    Article  CAS  Google Scholar 

  159. A. A. Ishchenko, N. A. Derevyanko, and A. M. Vinogradov, Russ. J. Gen. Chem., 67, No. 7, 1122-1125 (1997).

    CAS  Google Scholar 

  160. M. P. Samtsov, S. A. Tikhomirov, L. S. Lyashenka, et al., J. Appl. Spectrosc., 80, No. 2, 170-172 (2013), https://doi.org/10.1007/s10812-013-9741-4.

    Article  CAS  Google Scholar 

  161. M. P. Samtsov, E. S. Voropai, D. G. Mel’nikov, et al., J. Appl. Spectrosc., 3, 406-412 (2010), https://doi.org/10.1007/s10812-010-9346-0.

  162. D. Aristova, V. Kosach, S. Chernii, et al., Methods Appl. Fluoresc., 9, 045002 (2021), https://doi.org/10.1088/2050-6120/ac10ad.

  163. P. G. Pronkin and A. S. Tatikolov, Spectrochim. Acta., 263, 120171 (2021), https://doi.org/10.1016/j.saa.2021.120171.

  164. P. G. Pronkin and S. Alexander, Spectrochim. Acta., 269, 120744 (2022), 10.10167j.saa.2021.120744.

  165. P. G. Pronkin, A. S. Tatikolov, et al., Molecules, 27, 6367 (2022), https://doi.org/10.3390/molecules27196367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. P. A. Bouit, C. Aronica, and L. Toupet, J. Am. Chem. Soc., 132, No. 12, 4328-4335 (2010), https://doi.org/10.1021/ja9100886.

    Article  CAS  PubMed  Google Scholar 

  167. J. N. Gayton, S. Autry, R. C. Fortenberry, et al., Molecules, 23, No. 12, 3051 (2018), https://doi.org/10.3390/molecules23123051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. M. Eskandari, J. C. Roldao, J. Cerezo, et al., J. Am. Chem. Soc., 142, No. 6, 2835-2843 (2020), https://doi.org/10.1021/jacs.9b10686.

    Article  CAS  PubMed  Google Scholar 

  169. W. Xu, E. Leary, S. Sangtarash, et al., J. Am. Chem. Soc., 143, 20472-20481 (2021), https://doi.org/10.1021/jacs.1c10747.

    Article  CAS  PubMed  Google Scholar 

  170. M. I. Demchuk, A. A. Ishchenko, V. P. Mikhailov, and V. I. Avdeeva, Chem. Phys. Lett., 144, No. 1, 99-103 (1988), https://doi.org/10.1016/0009-2614(88)87097-0.

    Article  CAS  Google Scholar 

  171. I. V. Komarov, A. V. Turov, A. A. Ishchenko, et al., Doklady Akademii Nauk SSSR, 306, No. 5, 1134-1137 (1989).

    CAS  Google Scholar 

  172. I. V. Komarov, A. V. Turov, M. Yu. Kornilov, et al., Russ. J. Gen. Chem., 59, No. 10, 2110-2115 (1989).

    Google Scholar 

  173. A. A. Ishchenko, F. G. Kramarenko, A. G. Maydannic, et al., J. Inf. Rec. Mater., 19, No. 3, 207-219 (1991).

    Google Scholar 

  174. A. S. Tatikolov, Kh. S. Dzhulibekov, L. A. Shvedova, et al., J. Phys. Chem., 99, No. 17, 6525-6529 (1995), https://doi.org/10.1021/j100017a037.

    Article  CAS  Google Scholar 

  175. A. S. Tatikolov, N. A. Derevyanko, A. A. Ishchenko, et al., Ber. Bunsenges. Phys. Chem., 99, No. 5, 763-769 (1995), https://doi.org/10.1002/bbpc.19950990512.

    Article  CAS  Google Scholar 

  176. J. R. Lenhard, A. D. Cameron, et al., J. Phys. Chem., 97, No. 19, 4916-4925 (1993), https://doi.org/10.1021/j100121a009.

    Article  CAS  Google Scholar 

  177. S. K. Lee, M. M. Richter, L. Strekowski, and A. J. Bard, Anal. Chem., 69, 4126-4133 (1997), https://doi.org/10.1021/ac9704570.

    Article  CAS  Google Scholar 

  178. C. M. Yau, S. I. Pascu, S. A. Odom, et al., Chem. Commun., No. 25, 2897-2899 (2008), https://doi.org/10.1039/b802728e.

  179. A. A. Lugovski, M. P. Samtsov, K. N. Kaplevsky, et al., J. Photochem. Photobiol. A., 316, 31-36 (2016), https://doi.org/10.1016/j.jphotochem.2015.10.008.

    Article  CAS  Google Scholar 

  180. H. Maltanava, N. Belko, A. Lugovski, et al., Dyes Pigm., 205, 110599 (2022), https://doi.org/10.1016/j.dyepig.2022.110599.

  181. Yu. P. Istomin, E. N. Alexandrova, V. N. Chalov, et al., Exp. Oncol., 23, No. 3, 226-231, PMID: 15494692 (2004).

  182. A. A. Ishchenko, V. A. Svidro, and N. A. Derevyanko, Dyes Pigm., 10, No. 2, 85-96 (1989), https://doi.org/10.1016/0143-7208(89)85001-6.

    Article  CAS  Google Scholar 

  183. N. A. Derevyanko, G. G. Dyadyusha, A. A. Ishchenko, and A. I. Tolmachev, Theor. Exp. Chem., 19, No. 2, 150-157 (1983), https://doi.org/10.1007/BF00522419.

    Article  Google Scholar 

  184. S. M. Mahalingam, J. D. Ordaz, and P. S. Low, ACS Omega, 3, No. 6, 6066-6074 (2018), https://doi.org/10.1021/acsomega.8b00692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. D. Kessel and C. L. Evans, Photochem. Photobiol., 91, No. 4, 931-937 (2015), https://doi.org/10.1111/php.12456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. X. Zhao, Y. Yang, Y. Yu, et al., Chem. Commun., 55, 13542-13545 (2019), https://doi.org/10.1039/C9CC06157F.

    Article  CAS  Google Scholar 

  187. I. Noh, D. Lee, H. Kim, et al., Adv. Sci., 5, 1700481 (2018), https://doi.org/10.1002/advs.201700481.

    Article  CAS  Google Scholar 

  188. L. Zhang, H.-M. Li, J.-L. Chen, et al., J. Phys. Chem. Lett., 13, No. 4, 1090-1098 (2022), https://doi.org/10.1021/acs.jpclett.1c04092.

    Article  CAS  PubMed  Google Scholar 

  189. Z. Cai, J. Yu, J. Hu, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc., 286, 122027 (2023), https://doi.org/10.1016/j.saa.2022.122027.

  190. H. Ma, Y. Lu, Z. Huang, et al., J. Am. Chem. Soc., 144, No. 8, 3477-3486 (2022), https://doi.org/10.1021/jacs.1c11886.

    Article  CAS  PubMed  Google Scholar 

  191. J. Robinson-Duggon, F. Perez-Mora, L. Dibona-Villanueva, et al., Isr. J. Chem., 58, Nos. 3-4, 199-214 (2018), https://doi.org/10.1002/ijch.201700093.

    Article  CAS  Google Scholar 

  192. D.-H. Li, B. D. Smith, et al., J. Org. Chem., 87, No. 9, 5893-5903 (2022), https://doi.org/10.1021/acs.joc.2c00179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nat. Nanotechnol., 7, 11-23 (2012), https://doi.org/10.1038/NNANO.

    Article  CAS  Google Scholar 

  194. A. A. Ishchenko, N. O. Mchedlov-Petrossyan, N. N. Kriklya, et al., ChemPhysChem., 20, No. 8, 1028-1035 (2019), https://doi.org/10.1002/cphc.201900083.

    Article  CAS  PubMed  Google Scholar 

  195. M. Fadel, N. Samy, M. Nasr, and A. A. Alyoussef, Pharm. Dev. Technol., 22, No. 4, 545-550 (2016), https://doi.org/10.3109/10837450.2016.1146294

    Article  CAS  PubMed  Google Scholar 

  196. X. Tan, S. Luo, L. Long, et al., Adv. Mater., 29, No. 43, 1704196 (2017), https://doi.org/10.1002/adma.201704196.

    Article  CAS  Google Scholar 

  197. N. S. James, R. R. Cheruku, J. R. Missert, et al., Molecules, 23, 1842-1854 (2018), https://doi.org/10.3390/molecules23081842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. N. Lange, W. Szlasa, J. Jolanta Saczko, and A. Chwilkowska, Pharmaceutics, 12, 818-825 (2021), https://doi.org/10.3390/pharmaceutics13060818.

  199. Ch. Liu and C. N. Scott, Dyes Pigm., 196, 109792-109801 (2021), https://doi.org/10.1016/j.dyepig.2021.109792.

    Article  CAS  Google Scholar 

  200. O. P. Dimitriev, J. Zirzlmeier, A. Menon, et al., J. Phys. Chem. C., 125, 9855-9865 (2021), https://doi.org/10.1021/acs.jpcc.0c11593.

    Article  CAS  Google Scholar 

  201. C. Sun, B. Li, M. Zhao, et al., J. Am. Chem. Soc., 141, 19221-19225 (2019), https://doi.org/10.1021/jacs.9b10043.

    Article  CAS  PubMed  Google Scholar 

  202. A. V. Kulinich, N. A. Derevyanko, E. K. Mikitenko, and A. A. Ishchenko, J. Phys. Org. Chem., 24, No. 8, 732-742 (2011), https://doi.org/10.1002/poc.1821.

    Article  CAS  Google Scholar 

  203. I. Davydenko, S. Benis, S. Shiring, et al., J. Mater. Chem. C., 6, 3613-3620 (2018), https://doi.org/10.1039/C7TC05050J.

    Article  CAS  Google Scholar 

  204. A. Abid, C. Nguyen, and M. Daurat, Dyes Pigm., 97, 109840 (2022), https://doi.org/10.1016/j.dyepig.2021.109840.

  205. A. V. Kulinich, A. A. Ishchenko, L. F. Sharanda, et al., Ukr. J. Phys., 63, No. 5, 379-385 (2018), https://doi.org/10.15407/ujpe63.5.379.

    Article  Google Scholar 

  206. V. M. Ogenko, L. B. Kharkova, O. G. Yanko, et al., Nanosystems, Nanomaterials, Nanotechnologies, 18, No. 3, 639-647 (2020), https://doi.org/10.15407/nnn.18.03.639.

    Article  CAS  Google Scholar 

  207. V. N. Bliznyuk, J. Gasiorowski, A. A. Ishchenko, et al.,Org. Electron., 15, No. 6, 1105-1112 (2016), https://doi.org/10.1016/j.orgel.2014.03.003.

    Article  CAS  Google Scholar 

  208. V. N. Bliznyuk, J. Gasiorowski, A. A. Ishchenko, et al., Appl. Surf. Sci., 389, 419-487 (2016), https://doi.org/10.10167j.apsusc.2016.07.130.

  209. N. Ibrayev, G. Omarova, E. Seliverstova, et al., Eng. Sci., 14, 37-49 (2021), https://doi.org/10.30919/es8d1168.

    Article  CAS  Google Scholar 

  210. N. Ibrayev, E. Seliverstova, G. Omarova, et al., Mater. Today: Proc., 49, No. 6, 2464-2468 (2022), https://doi.org/10.1016/j.matpr.2020.11.424.

    Article  CAS  Google Scholar 

  211. Z. Deng, G. Qiao, L. Ma, et al., ACS Appl. Nano Mater., 4, 13513-13533 (2021), https://doi.org/10.1021/acsanm.1c02929.

    Article  CAS  Google Scholar 

  212. E. Thankarajan, H. Tuchinsky, S. Aviel-Ronen, et al., J. Controll. Release, 343, 506-517 (2022), https://doi.org/10.1016/j.jconrel.2022.02.008.

    Article  CAS  Google Scholar 

  213. D. M. Dereje, C. Pontremoli, M. J. M. Plata, et al., Photochemical & Photobiological Sciences, 21, 397-419 (2022), https://doi.org/10.1007/s43630-022-00175-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ishchenko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 6, pp. 333-356, November-December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishchenko, A.A., Syniugina, A.T. Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. Theor Exp Chem 58, 373–401 (2023). https://doi.org/10.1007/s11237-023-09754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09754-9

Keywords

Navigation