Skip to main content

Advertisement

Log in

P-persistent massive random access mechanism for machine type communication

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Growing demand for the Internet of Things (IoT) applications including smart cities, healthcare systems, smart grids, and transportation systems, has enhanced the popularity of Machine-Type Communication (MTC) in 5G and 6G cellular networks significantly. Massive access is a well-known challenge in MTC that should be efficiently managed. In this paper, a grant-based massive access mechanism is introduced where time-frames are separated into two distinct parts; one for contention-based resource granting and the other for scheduled data transmission. In the contention period, we propose a novel random access mechanism where the nodes are grouped based on their distances from the Base Station (BS), and the access probability of each group member is adjusted through solving an optimization problem. In the proposed mechanism, energy efficiency, spectrum efficiency and access delay are formulated in terms of the access probability of devices using p-persistent CSMA method. Thereafter, some optimization problems are formulated to improve the energy/spectrum efficiency and access delay by adjusting the access probability of devices while regarding their delay requirements. The simulation results indicate that the proposed method is better than the previous ones considering energy efficiency, access delay, bandwidth efficiency, and scalability. Also, in the proposed method, delay-sensitive nodes experience lower access delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hossain, M. I., Azari, A., & Zander, J. (2016). DERA: Augmented random access for cellular networks with dense H2H-MTC mixed traffic. In: 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 17).

  2. Rajandekar, A., & Sikdar, B. (2015). A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet of Things Journal, 2(2), 175–186

    Article  Google Scholar 

  3. Ali, M. S., Hossain, E., & Kim, D. I. (2017). LTE/LTE-A random access for massive machine-type communications in smart cities. IEEE Communications Magazine, 55(1), 76–83

    Article  Google Scholar 

  4. Lee, S. H., Jung, S. Y., & Kim, J. H. (2017). Dynamic resource allocation of random access for MTC devices. ETRI Journal, 39(4), 546–557

    Article  Google Scholar 

  5. AlQahtani, S. A. (2018). Modeling and performance analysis of unlicensed bands MAC strategy in multi-channel LTE-A networks with M2M/H2H coexistence. Wireless Networks, 24(6), 1965–1978

    Article  Google Scholar 

  6. Vilgelm, M., Schiessl, S., Al-Zubaidy, H., Kellerer, W., & Gross, J. (2018). On the reliability of LTE random access: Performance bounds for machine-to-machine burst resolution time. In: 2018 IEEE International Conference on Communications (ICC) (pp. 1–7).

  7. Pratas, N. K., Thomsen, H., Stefanović, Č., & Popovski, P. (2012). Code-expanded random access for machine-type communications. In: 2012 IEEE Globecom Workshops (pp. 1681–1686).

  8. Sim, Y., & Cho, D. H. (2020). Performance analysis of priority-based access class barring scheme for massive MTC random access. IEEE Systems Journal, 14(4), 5245–5252

    Article  Google Scholar 

  9. Laya, A., Alonso, L., & Alonso-Zarate, J. (2015). Contention resolution queues for massive machine type communications in LTE. In: 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 2314–2318).

  10. de Andrade, T. P., Astudillo, C. A., & da Fonseca, N. L. (2015). Random access mechanism for RAN overload control in LTE/LTE-A networks. In: 2015 IEEE International Conference on Communications (ICC) (pp. 5979–5984).

  11. Du, Q., Li, W., Liu, L., Ren, P., Wang, Y., & Sun, L. (2016). Dynamic RACH partition for massive access of differentiated M2M services. Sensors, 16(4), 455

    Article  Google Scholar 

  12. Arouk, O., Ksentini, A., & Taleb, T. (2016). Group paging-based energy saving for massive MTC accesses in LTE and beyond networks. IEEE Journal on Selected Areas in Communications, 34(5), 1086–1102

    Article  Google Scholar 

  13. Miuccio, L., Panno, D., & Riolo, S. (2020). Joint control of random access and dynamic uplink resource dimensioning for massive MTC in 5G NR based on SCMA. IEEE Internet of Things Journal, 7(6), 5042–5063

    Article  Google Scholar 

  14. Marshakov, E., Balitskiy, G., Andreev, K., & Frolov, A. (2019). A polar code based unsourced random access for the Gaussian MAC. In: 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (pp. 1–5).

  15. Ali, A., Shah, G. A., & Shoaib, M. (2019). Energy efficient uplink MAC protocol for M2M devices. IEEE Access, 7, 35952–35962

    Article  Google Scholar 

  16. Wang, G., Zhong, X., Mei, S., & Wang, J. (2010). An adaptive medium access control mechanism for cellular based machine to machine (M2M) communication. In: 2010 IEEE International Conference on Wireless Information Technology and Systems (pp. 1–4).

  17. Wu, H., Zhu, C., La, R. J., Liu, X., & Zhang, Y. (2012). Fast adaptive S-ALOHA scheme for event-driven machine-to-machine communications. In: 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  18. Shih, M. J., Pang, Y. C., Lin, G. Y., Wei, H. Y., & Vannithamby, R. (2014). Performance evaluation for energy-harvesting machine-type communication in LTE-A system. In: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) (pp. 1–5).

  19. Bonnefoi, R., Maciel, T. F., & Fernandes, C. E. R. (2018). Latency efficient request access rate for congestion reduction in LTE MTC. In: 2018 25th International Conference on Telecommunications (ICT) (pp. 481–485).

  20. Zhou, Z., Feng, J., Jia, Y., Mumtaz, S., Huq, K. M. S., Rodriguez, J., & Zhang, D. (2017). Energy-efficient game-theoretical random access for M2M communications in overlapped cellular networks. Computer Networks, 129, 493–501

    Article  Google Scholar 

  21. Zhang, R., Ruby, R., Pan, J., Cai, L., & Shen, X. (2010). A hybrid reservation/contention-based MAC for video streaming over wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 389–398

    Article  Google Scholar 

  22. Azari, A., & Miao, G. (2014). Energy efficient MAC for cellular-based M2M communications. In: 2014 IEEE global conference on signal and information processing (GlobalSIP) (pp. 128–132).

  23. Ghazvini, F. K., Mehmet-Ali, M., & Doughan, M. (2017). Scalable hybrid MAC protocol for M2M communications. Computer Networks, 127, 151–160

    Article  Google Scholar 

  24. Liu, Y., Yang, Z., Yu, R., Xiang, Y., & Xie, S. (2015). An efficient MAC protocol with adaptive energy harvesting for machine-to-machine networks. IEEE Access, 3, 358–367

    Article  Google Scholar 

  25. Al-Kaseem, B. R., & Al-Raweshidy, H. S. (2016). Energy efficient MAC protocol with smart sleep scheduling for cluster-based M2M networks. In: 2016 6th International Conference on Information Communication and Management (ICICM) (pp. 227–232).

  26. Liu, Y., Yuen, C., Cao, X., Hassan, N. U., & Chen, J. (2014). Design of a scalable hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet of Things Journal, 1(1), 99–111

    Article  Google Scholar 

  27. Park, I. S., Shitiri, E., & Cho, H. S. (2016). An orthogonal coded hybrid MAC protocol with received power based prioritization for M2M networks. In: 2016 eighth international conference on ubiquitous and future networks (ICUFN) (pp. 733–735).

  28. Miao, G., Azari, A., & Hwang, T. (2016). E2-MAC: Energy efficient medium access for massive M2M communications. IEEE Transactions on Communications, 64(11), 4720–4735

    Article  Google Scholar 

  29. Kafi, M. H., Mitchell, P., & Grace, D. (2020). Prioritised dynamic RACH (PD-RACH) scheme for delay-critical MTC communication. In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1–6).

  30. Kanchi, S., Sandilya, S., Bhosale, D., Pitkar, A., & Gondhalekar, M. (2013November). Overview of LTE-A technology. In: 2013 IEEE global high tech congress on electronics (pp. 195–200).

  31. Stefania, S., Issam, T., & Matthew, B. (2009). LTE, the UMTS long term evolution: From theory to practice. (pp. 136–144). Wiley.

    Google Scholar 

  32. Bruno, R., Conti, M., & Gregori, E. (2002). Optimization of efficiency and energy consumption in p-persistent CSMA-based wireless LANs. IEEE Transactions on Mobile Computing, 1(1), 10–31

    Article  Google Scholar 

  33. MacKenzie, R., & O’Farrell, T. (2010). Throughput and delay analysis for p-persistent CSMA with heterogeneous traffic. IEEE Transactions on Communications, 58(10), 2881–2891

    Article  Google Scholar 

  34. Botta, M., & Simek, M. (2013). Adaptive distance estimation based on RSSI in 802.15. 4 network. Radioengineering, 22(4), 1162–1168

    Google Scholar 

  35. Adewumi, O. G., Djouani, K., & Kurien, A. M. (2013). RSSI based indoor and outdoor distance estimation for localization in WSN. In: 2013 IEEE international conference on Industrial technology (ICIT) (pp. 1534–1539).

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

BSG: Conceptualization, Methodology, Validation, Investigation, Writing- Original Draft, Visualization, Writing—Review & Editing, Supervision, Project administration. MMK: Conceptualization, Methodology, Software, Validation, Investigation, Writing- Original Draft, Visualization, Writing—Review & Editing.

Corresponding author

Correspondence to Behrouz Shahgholi Ghahfarokhi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Human and animal rights

This article does not contain any study with human participants and animal performed by any of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karchegani, M.M., Ghahfarokhi, B.S. P-persistent massive random access mechanism for machine type communication. Telecommun Syst 78, 169–185 (2021). https://doi.org/10.1007/s11235-021-00793-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00793-y

Keywords

Navigation