Skip to main content
Log in

Current and future developments to improve 5G-NewRadio performance in vehicle-to-everything communications

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Vehicle to Everything (V2X) communication is a technology that provides connectivity between vehicles, pedestrians, and road infrastructure. Dedicated Short-Range Communication (DSRC) is proposed by different standards such as ETSI, IEEE, and others since ten years ago to provide wireless connectivity in V2X. Recently, the LTE-V2X based cellular communication is standardized by the 3rd Generation Partner Project (3GPP) Release 14 as an alternative V2X technology to support autonomous driving. 5G-NewRadio (5G-NR) is being proposed by the 3GPP Release 16 as a new radio access technology to offer enhanced radio coverage and wide ultra-high reliability services. 3GPP Release15 was published in 2018 to include Phase 1 5G-NR standard. 3GPP Release 16 is designed to provide the 5G phase 2 and scheduled for being delivered in June 2020. In this paper, we study V2X based DSRC and LTE-V2X standards and introduce the current 5G-V2X standards progress. We present the 5G-V2X architecture design, core elements, challenges, essential requirements, security enhancement, and radio techniques. Also, we consider the security aspects of architecture and issues of 5G-V2X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. World Health Organization. (2004) .World report on road traffic injury prevention, World Health Organization.

  2. AAA Study Finds Costs Associated With Traffic Crashes Are More than Three Times Greater than Congestion Costs. AAA NewsRoom, 08-Nov-2011. Retrieved September 27, 2019 from https://newsroom.aaa.com/2011/11/aaa-study-finds-costs-associated-with-traffic-crashes-are-more-than-three-times-greater-than-congestion-costs/.

  3. Bai, F., Stancil, D. D., & Krishnan, H. (2010). Toward understanding characteristics of dedicated short range communications (DSRC) from a perspective of vehicular network engineers. In Proceedings of the sixteenth annual international conference on mobile computing and networking (pp. 329–340).

  4. Maglaras, L., Al-Bayatti, A., He, Y., Wagner, I., & Janicke, H. (2016). Social internet of vehicles for smart cities. Journal of Sensor and Actuator Networks, 5(1), 3.

    Article  Google Scholar 

  5. Santa, J., Gómez-Skarmeta, A. F., & Sánchez-Artigas, M. (2008). Architecture and evaluation of a unified V2V and V2I communication system based on cellular networks. Computer Communications, 31(12), 2850–2861.

    Article  Google Scholar 

  6. Abboud, K., Omar, H. A., & Zhuang, W. (2016). Interworking of DSRC and cellular network technologies for V2X communications: A survey. IEEE Transactions on Vehicular Technology, 65(12), 9457–9470.

    Article  Google Scholar 

  7. Wang, Y., Ahmed, A., Krishnamachari, B., & Psounis, K. (2008). IEEE 802.11 p performance evaluation and protocol enhancement. In 2008 IEEE international conference on vehicular electronics and safety (pp. 317–322). IEEE.

  8. Gräfling, S., Mähönen, P., & Riihijärvi, J. (2010). Performance evaluation of IEEE 1609 WAVE and IEEE 802.11 p for vehicular communications. In 2010 second international conference on ubiquitous and future networks (ICUFN) (pp. 344–348). IEEE.

  9. Uzcátegui, R. A., De Sucre, A. J., & Acosta-Marum, G. (2009). Wave: A tutorial. IEEE Communications Magazine, 47(5), 126–133.

    Article  Google Scholar 

  10. Jafari, A., Al-Khayatt, S., & Dogman, A. (2012). Performance evaluation of IEEE 802.11 p for vehicular communication networks. In 2012 8th international symposium on communication systems, networks & digital signal processing (CSNDSP) (pp. 1–5). IEEE.

  11. Hedges, C., & Perry, F. (2008). Overview and use of SAE J2735 message sets for commercial vehicles (No. 2008-01-2650). SAE Technical Paper.

  12. Chen, S., Hu, J., Shi, Y., & Zhao, L. (2016). LTE-V: A TD-LTE-based V2X solution for future vehicular network. IEEE Internet of Things Journal, 3(6), 997–1005.

    Article  Google Scholar 

  13. Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., et al. (2017). Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70–76.

    Article  Google Scholar 

  14. Molina-Masegosa, R., & Gozalvez, J. (2017). LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 12(4), 30–39.

    Article  Google Scholar 

  15. Molina-Masegosa, R., & Gozalvez, J. (2017). System level evaluation of LTE-V2V mode 4 communications and its distributed scheduling. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  16. Tseng, Y. L. (2015). LTE-advanced enhancement for vehicular communication. IEEE Wireless Communications, 22(6), 4–7.

    Article  Google Scholar 

  17. Filippi, A., Moerman, K., Martinez, V., Turley, A., Haran, O., & Toledano, R. (2017). IEEE802. 11p ahead of LTE-V2V for safety applications. In Autotalks NXP.

  18. Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J. F., Hoglund, A., et al. (2016). LTE release 14 outlook. IEEE Communications Magazine, 54(6), 44–49.

    Article  Google Scholar 

  19. Hobert, L., Festag, A., Llatser, I., Altomare, L., Visintainer, F., & Kovacs, A. (2015). Enhancements of V2X communication in support of cooperative autonomous driving. IEEE Communications Magazine, 53(12), 64–70.

    Article  Google Scholar 

  20. Boban, M., Kousaridas, A., Manolakis, K., Eichinger, J., & Xu, W. (2018). Connected roads of the future: Use cases, requirements, and design considerations for vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 13(3), 110–123.

    Article  Google Scholar 

  21. Temel, S., Vuran, M. C., Lunar, M. M., Zhao, Z., Salam, A., Faller, R. K., et al. (2018). Vehicle-to-barrier communication during real-world vehicle crash tests. Computer Communications, 127, 172–186.

    Article  Google Scholar 

  22. Xu, Z., Li, X., Zhao, X., Zhang, M. H., & Wang, Z. (2017). DSRC versus 4G-LTE for connected vehicle applications: A study on field experiments of vehicular communication performance. Journal of Advanced Transportation, 2017, 1–10.

    Google Scholar 

  23. Ngmn—Next Generation Mobile Networks. (n.d.). 5G White Paper. Retrieved April 10, 2019, from https://www.ngmn.org/5g-white-paper.html.

  24. Harris, W. (2004). Federal Communications Commission.

  25. AbdelHakeem, S. A., Hady, A. A., & Kim, H. (2020). Optimizing 5G in V2X communications: Technologies, requirements, challenges, and standards. In Fundamental and supportive technologies for 5G mobile networks (pp. 269–308). IGI Global.

  26. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162–1182.

    Article  Google Scholar 

  27. Weiß, C. (2011). V2X communication in Europe-From research projects towards standardization and field testing of vehicle communication technology. Computer Networks, 55(14), 3103–3119.

    Article  Google Scholar 

  28. Shulman, M., & Deering, R. (2005). Third annual report of the crash avoidance metrics partnership, April 2003March 2004 (No. HS-809 837).

  29. Li, Y. J. (2010). An overview of the DSRC/WAVE technology. In International conference on heterogeneous networking for quality, reliability, security and robustness (pp. 544–558). Springer, Berlin.

  30. Rezaei, S., Sengupta, R., & Krishnan, H. (2007). Reducing the communication required by DSRC-based vehicle safety systems. In 2007 IEEE intelligent transportation systems conference (pp. 361–366). IEEE.

  31. Wang, M., Winbjork, M., Zhang, Z., Blasco, R., Do, H., Sorrentino, S., Belleschi, M., & Zang, Y. (2017). Comparison of LTE and DSRC-based connectivity for intelligent transportation systems. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  32. Yin, J., ElBatt, T., Yeung, G., Ryu, B., Habermas, S., Krishnan, H., & Talty, T. (2004). Performance evaluation of safety applications over DSRC vehicular ad hoc networks. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (pp. 1–9). ACM.

  33. Samara, G., Al-Salihy, W. A., & Sures, R. (2010). Security analysis of vehicular ad hoc nerworks (VANET). In 2010 second international conference on network applications, protocols and services (pp. 55–60). IEEE.

  34. Haidar, F., Kaiser, A., & Lonc, B. (2017). On the performance evaluation of vehicular PKI protocol for V2X communications security. In 2017 IEEE 86th vehicular technology conference (VTC-Fall) (pp. 1–5). IEEE.

  35. Seo, J. B., & Leung, V. C. (2012). Performance modeling and stability of semi-persistent scheduling with initial random access in LTE. IEEE Transactions on Wireless Communications, 11(12), 4446–4456.

    Article  Google Scholar 

  36. Höyhtyä, M., Apilo, O., & Lasanen, M. (2018). Review of latest advances in 3GPP standardization: D2D communication in 5G systems and its energy consumption models. Future Internet, 10(1), 3.

    Article  Google Scholar 

  37. Sun, S. H., Hu, J. L., Peng, Y., Pan, X. M., Zhao, L., & Fang, J. Y. (2016). Support for vehicle-to-everything services based on LTE. IEEE Wireless Communications, 23(3), 4–8.

    Article  Google Scholar 

  38. Qualcomm. (2019). Growing the C-V2X ecosystem and preparing it for commercial readiness in 2019, Qualcomm, 2020. Retrieved 25 Feb, 2020 from, https://www.qualcomm.com/news/onq/2018/02/22/growing-c-v2x-ecosystem-and-preparing-it-commercial-readiness-2019.

  39. Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3354–3361). IEEE.

  40. Patzold, M. (2018). 5G readiness on the horizon [mobile radio]. IEEE Vehicular Technology Magazine, 13(1), 6–13.

    Article  Google Scholar 

  41. Storck, C. R., & Duarte-Figueiredo, F. (2019). A 5G V2X ecosystem providing internet of vehicles. Sensors, 19(3), 550.

    Article  Google Scholar 

  42. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

    Article  Google Scholar 

  43. May, M., Ilnseher, T., Wehn, N., & Raab, W. (2010). A 150Mbit/s 3GPP LTE turbo code decoder. In Proceedings of the conference on design, automation and test in Europe (pp. 1420–1425). European Design and Automation Association.

  44. Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy, 41(5–6), 422–433.

    Article  Google Scholar 

  45. Yilmaz, O. N., Wang, Y. P. E., Johansson, N. A., Brahmi, N., Ashraf, S. A., & Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1190–1195). IEEE.

  46. Ye, H., Liang, L., Li, G. Y., Kim, J., Lu, L., & Wu, M. (2018). Machine learning for vehicular networks: Recent advances and application examples. IEEE Vehicular Technology Magazine, 13(2), 94–101.

    Article  Google Scholar 

  47. Fallgran, M., Dillinger, M., Li, Z., Vivier, G., Abbas, T., Alonso-Zarate, J., et al. (2018). On Selected V2X technology components and enablers from the 5GCAR project. In 2018 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–5). IEEE.

  48. GCAR D2.1. (2020). 5GCAR Scenarios, Use Cases, Requirements and KPIs.

  49. GAA. White Paper on C-V2X conclusions based on evaluation of available architectural options. Retrieved March 20, 2020, from http://5gaa.org/news/5gaa-releases-white-paper-on-c-v2x-conclusions-based-on-evaluation-ofavailable-architectural-options/.

  50. GCAR. 5G Communication automotive research and innovation. Retrieved March 20, 2020, from https://5gcar.eu/.

  51. GCAR. Deliverable D5.1, Demonstration Guidelines. Retrieved March 20, 2020, from http://5gcar.eu/wp-content/uploads/2018/08/5GCAR_D5.1_v1.0.pdf.

  52. GPP TS 23.285. (2018). Architecture enhancements for V2X services, v15.0.0.

  53. GPP TR 23.786. (2018). Study on architecture enhancements for EPS and 5G System to support advanced V2X services, v0.6.0.

  54. Jain, V., Lapoehn, S., Frankiewicz, T., Hesse, T., & Gharba, M. (2017). Prediction based framework for vehicle platooning using vehicular communications. In IEEE vehicular networking conference (VNC).

  55. GPP TS 23.287. (2019). Architecture enhancements for 5G System (5GS) to support Vehicle-to-Everything (V2X) services. v1.0.0.

  56. GPP. TR 22.886. Study on enhancement of 3GPP support for 5G V2X services (Release 16). Retrieved March 20, 2020, from https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3108.

  57. Seo, H., Lee, K.-D., Yasukawa, S., Peng, Y., & Sartori, P. (2016). LTE evolution for vehicle-to-everything services. IEEE Communications Magazine, 54(6), 22–28.

    Article  Google Scholar 

  58. GPP TR 22.885 V1.0.0. (2015). Study on LTE Support for V2X Services (Release 14), 3GPP Std.

  59. GPP Technical Specification. TS 22.186 Technical Specification Group Services and System Aspects; Enhancement of 3GPP Support for V2X Scenarios; Stage 1 (Release 15) v15.2.0. September 2017. Retrieved March 20, 2020, from https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3180.

  60. Boban, M., Manolakis, K., Ibrahim, M., Bazzi, S., & Xu, W. (2016). Design aspects for 5G V2X physical layer. In 2016 IEEE conference on standards for communications and networking (CSCN) (pp. 1–7). IEEE.

  61. Mavromatis, I., Tassi, A., Rigazzi, G., Piechocki, R. J., & Nix, A. (2018). Multi-radio 5G architecture for connected and autonomous vehicles: application and design insights. ArXiv preprint arXiv:1801.09510.

  62. Lianghai, J., Weinand, A., Han, B., & Schotten, H. D. (2018). Multi-RATs support to improve V2X communication. In 2018 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  63. Cao, H., Gangakhedkar, S., Ali, A. R., Gharba, M., & Eichinger, J. (2017). A testbed for experimenting 5G-V2X requiring ultra reliability and low-latency. In WSA 2017; 21th international ITG workshop on smart antennas (pp. 1–4). VDE.

  64. Naik, G., Choudhury, B., & Park, J. M. (2019). IEEE 802.11 bd & 5G NR V2X: Evolution of radio access technologies for V2X communications. IEEE Access, 7, 70169–70184.

    Article  Google Scholar 

  65. Husain, S., Kunz, A., Prasad, A., Pateromichelakis, E., Samdanis, K., & Song, J. (2018). The road to 5G V2X: Ultra-high reliable communications. In 2018 IEEE conference on standards for communications and networking (CSCN) (pp. 1–6). IEEE.

  66. Shimizu, T., Va, V., Bansal, G., & Heath, R. W. (2018). Millimeter wave V2X communications: Use cases and design considerations of beam management. In 2018 Asia-Pacific microwave conference (APMC) (pp. 183–185). IEEE.

  67. Turley, A., Moerman, K., Filippi, A., & Martinez, V. (2018). C-ITS: Three observations on LTE-V2X and ETSI ITS-G5—A comparison. In NXP Semiconductors White Paper.

  68. Maskulainen, I., Luoto, P., Pirinen, P., Bennis, M., Horneman, K., & Latva-aho, M. (2017). Performance evaluation of adaptive beamforming in 5G-V2X networks. In 2017 European conference on networks and communications (EuCNC) (pp. 1–5). IEEE.

  69. Antonescu, B., Moayyed, M. T., & Basagni, S. (2017). mmWave channel propagation modeling for V2X communication systems. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6). IEEE.

  70. Orsino, A., Galinina, O., Andreev, S., Yilmaz, O. N., Tirronen, T., Torsner, J., & Koucheryavy, Y. (2018). Improving initial access reliability of 5G mmWave cellular in massive V2X communications scenarios. In 2018 IEEE international conference on communications (ICC) (pp. 1–7). IEEE.

  71. 5GCAR – 5G Communication Automotive Research and innovation, 5 gcar.eu, 2019. Retrieved July 23, from, 2019 https://5gcar.eu/.

  72. 5G-PPP, 5g-ppp.eu, 2019. Retrieved July 23, from, 2019 https://5g-ppp.eu/.

  73. Campolo, C., Molinaro, A., Iera, A., Fontes, R. R., & Rothenberg, C. E. (2018). Towards 5G network slicing for the V2X ecosystem. In 2018 4th IEEE conference on network softwarization and workshops (NetSoft) (pp. 400–405). IEEE.

  74. Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.

    Article  Google Scholar 

  75. Sahin, T., Klugel, M., Zhou, C., & Kellerer, W. (2018). Virtual cells for 5G V2X communications. IEEE Communications Standards Magazine, 2(1), 22–28.

    Article  Google Scholar 

  76. Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2017). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications, 24(6), 38–45.

    Article  Google Scholar 

  77. De la Oliva, A., Li, X., Costa-Perez, X., Bernardos, C. J., Bertin, P., Iovanna, P., et al. (2018). 5g-transformer: Slicing and orchestrating transport networks for industry verticals. IEEE Communications Magazine, 56(8), 78–84.

    Article  Google Scholar 

  78. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., & Flinck, H. (2018). Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys & Tutorials, 20(3), 2429–2453.

    Article  Google Scholar 

  79. Kaloxylos, A. (2018). A survey and an analysis of network slicing in 5G networks. IEEE Communications Standards Magazine, 2(1), 60–65.

    Article  Google Scholar 

  80. Cao, J., Ma, M., Li, H., Ma, R., Sun, Y., Yu, P., & Xiong, L. (2019). A survey on security aspects for 3GPP 5G networks. In IEEE communications surveys & tutorials.

  81. Ahmad, I., Shahabuddin, S., Kumar, T., Okwuibe, J., Gurtov, A., & Ylianttila, M. (2019). Security for 5G and beyond. IEEE Communications Surveys & Tutorials, 21(4), 3682–3722.

    Article  Google Scholar 

  82. Sharma, A., Sharma, I., & Jain, A. (2019). A construction of security enhanced and efficient handover AKA protocol in 5G communication network. In 2019 10th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–6). IEEE.

  83. Ahmad, I., Suomalainen, J., & Huusko, J. (2019). 5 G-Core Network Security. Wiley 5G Ref: The Essential 5G Reference Online (pp. 1–18).

  84. The MobileBroadband Standard. (2019). SA3 - Security, www.3gpp.org/specifications-groups/sa-plenary/sa3-security.

  85. Henda, N. B., Zamora, D. C., & Torvinen, V. (2019). Secondary authentication of a user equipment. U.S. Patent Application 16/372,751, filed.

  86. Zhang, J., Wang, Q., Yang, L., & Feng, T. (2019). Formal verification of 5G-EAP-TLS authentication protocol. In 2019 IEEE fourth international conference on data science in cyberspace (DSC) (pp. 503–509). IEEE.

  87. Prasad, A. R., Arumugam, S., Sheeba, B., & Zugenmaier, A. (2018). 3GPP 5G security. Journal of ICT Standardization, 6(1), 137–158.

    Article  Google Scholar 

  88. Kumar, A., & Om, H. (2018). Handover authentication scheme for device-to-device outband communication in 5G-WLAN next generation heterogeneous networks. Arabian Journal for Science and Engineering, 43(12), 7961–7977.

    Article  Google Scholar 

  89. Ferrag, M. A., Maglaras, L., Argyriou, A., Kosmanos, D., & Janicke, H. (2018). Security for 4G and 5G cellular networks: A survey of existing authentication and privacy-preserving schemes. Journal of Network and Computer Applications, 101, 55–82.

    Article  Google Scholar 

  90. Abdel Hakeem, S. A., Hady, A. A., & Kim, H. (2019). RPL routing protocol performance in smart grid applications based wireless sensors: Experimental and simulated analysis. Electronics, 8(2), 186.

    Article  Google Scholar 

  91. Hakeem, S. A. A., Barakat, T. M., & Seoud, R. A. A. (2015). New real evaluation study of rpl routing protocol based on cortex m3 nodes of iot-lab test bed. Middle-East Journal of Scientific Research, 23(8), 1639–1651.

    Google Scholar 

  92. Hussain, R., Hussain, F., & Zeadally, S. (2019). Integration of VANET and 5G security: A review of design and implementation issues. Future Generation Computer Systems, 101, 843–864.

    Article  Google Scholar 

  93. Lu, R., Zhang, L., Ni, J., & Fang, Y. (2019). 5G vehicle-to-everything services: Gearing up for security and privacy. In Proceedings of the IEEE.

  94. Sharma, V., Kim, J., Ko, Y., You, I., & Seo, J. T. (2019). An optimal security management framework for backhaul-aware 5G-Vehicle to Everything (V2X). ArXiv preprint arXiv:1909.07568.

  95. Zafeiropoulos, A., Gouvas, P., Fotopoulou, E., Tsiolis, G., Xirofotos, T., Bonnet, J., et al. (2018). Enabling vertical industries adoption of 5G technologies: A Cartography of evolving solutions. In 2018 European conference on networks and communications (EuCNC) (pp. 1–9). IEEE.

  96. Norrman, K., Näslund, M., & Dubrova, E. (2016). Protecting IMSI and user privacy in 5G networks. In Proceedings of the 9th EAI international conference on mobile multimedia communications (pp. 159–166). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  97. GPP TS 33.401. Technical specification group services and system aspects: 3GPP system architecture evolution (SAE) security architecture.

  98. GPP TR 33.899. (2017). Study on the security aspects of the next generation system, Release 14, v 1.3.0.

  99. Technical specification—3GPP TS 33.501 V0.7.1 (2018-01). Retrieved Sept 2018, from http://www.3gpp.org/ftp//Specs/archive/33series/33.501/.

  100. Zhang, X., Kunz, A., & Schroder, S. (2017). Overview of 5G security in 3GPP. In 2017 IEEE conference on standards for communications and networking (CSCN).

  101. GPP. (2018). Security Architecture and Procedures for 5G System (Release 15), technical specification (TS) 33.501, v15.5.0.

  102. Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., & Stettler, V. (2018). A formal analysis of 5G authentication. In Proceedings of the 2018 ACM SIGSAC conference on computer and communications security (CCS ‘18).

  103. Cordero, C. (2019). Optimizing 5G for V2X—Requirements, implications and challenges. In 2016 IEEE 84th vehicular technology conference: VTC2016-Fall, Montréal, Canada.

  104. Brecht, B, & Hehn, T. (2018). A security credential management system for V2X communications. In Wireless Networks Connected Vehicles (pp. 83–115).

  105. Khan, U., Agrawal, S., & Silakari, S. (2015). A detailed survey on misbehavior node detection techniques in vehicular ad hoc networks. In Information systems design and intelligent applications (pp. 11–19). Springer, New Delhi.

  106. Arkko, J., Norrman, K., Näslund, M., & Sahlin, B. (2015). A USIM compatible 5G AKA protocol with perfect forward secrecy. In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 1, pp. 1205–1209). IEEE.

  107. Hakeem, S. A. A., El-Gawad, M. A. A., & Kim, H. (2019). A decentralized lightweight authentication and privacy protocol for vehicular networks. IEEE Access, 7, 119689–119705.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Institute of Information and communications Technology Planning and Evaluation (IITP) Grant funded by the Korea government (MSIT) (No. 20200013040012005, Development of Self-Learnable Mobile Recursive Neural Network Processor Technology). It was also supported by Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (N0001883, The Competency Development Program for Industry Specialist). Prof. HyungWon Kim is the corresponding author for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyungWon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Hakeem, S.A., Hady, A.A. & Kim, H. Current and future developments to improve 5G-NewRadio performance in vehicle-to-everything communications. Telecommun Syst 75, 331–353 (2020). https://doi.org/10.1007/s11235-020-00704-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00704-7

Keywords

Navigation