Skip to main content
Log in

Mode-coupling approximation in a fractional-power generalization: Particle dynamics in supercooled liquids and glasses

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the particle dynamics in supercooled liquids in the mode-coupling approximation in a fractional-power generalization, where the kinetic integro-differential equations are exactly derived from the equations of motion of the dynamical variables by projection operator methods. We show that in the case of separated time scales in the particle dynamics and with the nonlinear interaction between the stochastic and translation motion modes taken into account, the solution of the equations gives a well-defined picture of singularities of the one-particle dynamics of supercooled liquids and glasses. Comparison with the data for the metal alloy Fe 50 Cr 50 atomic dynamics simulation demonstrates a good agreement in the entire temperature range corresponding to the supercooled liquid and glass phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. March, Liquid Metals, Cambridge Univ. Press, Cambridge (1990).

    Book  Google Scholar 

  2. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, Phys. Rev. Lett., 95, 200601 (2005); arXiv:cond-mat/0511308v1 (2005).

    Article  ADS  Google Scholar 

  3. M. H. Lee, Phys. Rev. Lett., 49, 1072–1075 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. H. Lee, Phys. Rev. E, 62, 1769–1772 (2000).

    Article  ADS  Google Scholar 

  5. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  6. D. N. Zubarev, V. G. Morozov, and G. Repke, Statistical Mechanics of Nonequilibrium Processes [in Russian], Vol. 2, Fizmatlit, Moscow (2002).

    Google Scholar 

  7. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Acad. Press, London (2006).

    Google Scholar 

  8. R. M. Yulmetyev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, Phys. Rev. E, 64, 057101 (2001); JETP Lett., 76, 147–150 (2002); R. M. Yulmetyev, A. V. Mokshin, and P. Hänggi, Phys. Rev. E, 68, 051201 (2003); arXiv:cond-mat/0401314v2 (2004); J. Chem. Phys., 121, 7341–7346 (2004); arXiv:cond-mat/0506636v1 (2005).

    Article  ADS  Google Scholar 

  9. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi, Comput. Math. and Math. Phys., 103, 841–849 (2006).

    Google Scholar 

  10. R. Kubo, J. Phys. Soc. Japan, 12, 570–568 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  11. W. Götze, “Aspects of structural glass transitions,” in: Liquids, Freezing, and the Glass Transition (J. P. Hansen, D. Levesque, and J. Zinn-Justen, eds.), North-Holland, Amsterdam (1991), pp. 287–503.

    Google Scholar 

  12. W. Götze, Complex Dynamics of Glass-Forming Liquids, Oxford Univ. Press, Oxford (2009).

    MATH  Google Scholar 

  13. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Theor. Math. Phys., 145, 1576–1589 (2005).

    Article  MATH  Google Scholar 

  14. Yu. A. Tserkovnikov, Theor. Math. Phys., 154, 165–174 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. R. Khusnutdinov and R. M. Yul’met’yev, Theor. Math. Phys., 105, 1426–1441 (1995).

    Article  MATH  Google Scholar 

  16. B. B. Markiv, I. P. Omelyan, and M. V. Tokarchuk, Theor. Math. Phys., 154, 75–84 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Zwanzig, Phys. Rev., 124, 983–992 (1961).

    Article  ADS  MATH  Google Scholar 

  18. H. Mori, Prog. Theoret. Phys., 33, 423–455 (1965); 34, 399–416 (1965).

    Article  ADS  MATH  Google Scholar 

  19. R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford (2004).

    Google Scholar 

  20. V. Yu. Shurygin and R. M. Yul’met’yev, Theor. Math. Phys., 83, 492–502 (1990).

    Article  Google Scholar 

  21. A. Stukowski, B. Sadigh, P. Erhart, and A. Caro, Modelling Simul. Mater. Sci. Eng., 17, 075005 (2009).

    Article  ADS  Google Scholar 

  22. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys., 81, 3684–3690 (1984).

    Article  ADS  Google Scholar 

  23. A. V. Mokshin and J.-L. Barrat, Phys. Rev. E, 82, 021505 (2010); arXiv:1009.5775v1 [cond-mat.mtrl-sci] (2010).

    Article  ADS  Google Scholar 

  24. N. Anento, L. E. González, D. J. González, Y. Chushak, and A. Baumketner, Phys. Rev. E, 70, 041201 (2002); arXiv:cond-mat/0404649v1 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokshin.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 171, No. 1, pp. 135–149, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokshin, A.V., Chvanova, A.V. & Khusnutdinoff, R.M. Mode-coupling approximation in a fractional-power generalization: Particle dynamics in supercooled liquids and glasses. Theor Math Phys 171, 541–552 (2012). https://doi.org/10.1007/s11232-012-0052-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0052-3

Keywords

Navigation