Skip to main content
Log in

Nonlinear algebra and Bogoliubov’s recursion

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We give many examples of applying Bogoliubov’s forest formula to iterative solutions of various nonlinear equations. The same formula describes an extremely wide class of objects, from an ordinary quadratic equation to renormalization in quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogoliubow and O. S. Parasiuk, Acta Math., 97, 227–266 (1957); N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian], Gostekhizdat, Moscow (1957); English transl., Wiley, New York (1980); B. M. Stepanov and O. I. Zavialov, Yadern. Fiz., 1, 922 (1965); K. Hepp, Comm. Math. Phys., 2, 301–326 (1966); M. Zimmerman, Comm. Math. Phys., 15, 208–234 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  2. O. I. Zavialov, Renormalized Feynman Diagrams [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  3. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison Wesley, Reading, Mass. (1995).

    Google Scholar 

  4. J. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator-Product Expansion, Cambridge Univ. Press, Cambridge (1984).

    MATH  Google Scholar 

  5. A. N. Vasil’ev, Quantum Field Renormgroup in the Theory of Critical Behavior and Stochastic Dynamics [in Russian], Izd. PIYaF, St. Petersburg (1998).

    Google Scholar 

  6. A. Connes and D. Kreimer, Comm. Math. Phys., 210, 249–273 (2000); arXiv:hep-th/9912092v1 (1999); Comm. Math. Phys., 216, 215–241 (2001); arXiv:hep-th/0003188v1 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Gerasimov, A. Morozov, and K. Selivanov, Internat. J. Mod. Phys. A, 16, 1531–1558 (1995); arXiv:hep-th/0005053v1 (2000).

    Article  MathSciNet  Google Scholar 

  8. D. Kreimer and R. Delbourgo, Phys. Rev. D, 60, 105025 (1999); arXiv:hep-th/9903249v3 (1999); K. Ebrahimi-Fard and D. Kreimer, J. Phys. A, 38, R385–R407 (2005); arXiv:hep-th/0510202v2 (2005); D. Kreimer, “Structures in Feynman graphs: Hopf algebras and symmetries,” in: Graphs and Patterns in Mathematics and Theoretical Physics (Proc. Sympos. Pure Math., Vol. 73), Amer. Math. Soc., Providence, R. I. (2005), p. 43–78; arXiv:hep-th/0202110v3 (2002); Ann. Phys., 321, 2757–2781 (2006); arXiv:hep-th/0509135v3 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. W. D. van Suijlekom, Lett. Math. Phys., 77, 265–281 (2006); arXiv:hep-th/0602126v2 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. R. Wulkenhaar, “Hopf algebras in renormalization and NC geometry,” in: Noncommutative Geometry and the Standard Model of Elementary Particle Physics (Lect. Notes Phys., Vol. 596), Springer, Berlin (2002), p. 313–324; arXiv:hep-th/9912221v1 (1999).

    Chapter  Google Scholar 

  11. D. V. Malyshev, Theor. Math. Phys., 143, 505–514 (2005); arXiv:hep-th/0408230v1 (2004); D. V. Malyshev, “Non RG logarithms via RG equations,” arXiv:hep-th/0402074v1 (2004); Phys. Lett., 578, 231–234 (2004); arXiv:hep-th/0307301v2 (2003).

    Article  MathSciNet  Google Scholar 

  12. D. I. Kazakov and G. S. Vartanov, “Renormalizable expansion for nonrenormalizable theories: I. Scalar higher dimensional theories,” arXiv:hep-th/0607177v2 (2006).

  13. D. I. Kazakov and G. S. Vartanov, “Renormalizable expansion for nonrenormalizable theories: II. Gauge higher dimensional theories,” arXiv:hep-th/0702004v1 (2007).

  14. I. V. Volovich and D. V. Prokhorenko, Proc. Steklov Inst. Math., 245, 273–280 (2004); arXiv:hep-th/0611178v1 (2006).

    MathSciNet  Google Scholar 

  15. B. Delamotte, Amer. J. Phys., 72, 170–184 (2004); arXiv:hep-th/0212049v3 (2002).

    Article  ADS  Google Scholar 

  16. V. Dolotin and A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Singapore (2007); arXiv:hep-th/0609022v2 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Morozov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 154, No. 2, pp. 316–343, February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A.Y., Serbyn, M.N. Nonlinear algebra and Bogoliubov’s recursion. Theor Math Phys 154, 270–293 (2008). https://doi.org/10.1007/s11232-008-0026-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0026-7

Keywords

Navigation