Skip to main content
Log in

Quasi-exact solution of the problem of relativistic bound states in the (1+1)-dimensional case

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the problem of bound states for bosons and fermions in the framework of the relativistic configurational representation with the kinetic part of the Hamiltonian containing purely imaginary finite shift operators e±ihd/dx instead of differential operators. For local (quasi)potentials of the type of a rectangular potential well in the (1+1)-dimensional case, we elaborate effective methods for solving the problem analytically that allow finding the spectrum and investigating the properties of wave functions in a wide parameter range. We show that the properties of these relativistic bound states differ essentially from those of the corresponding solutions of the Schrödinger and Dirac equations in a static external potential of the same form in a number of fundamental aspects both at the level of wave functions and of the energy spectrum structure. In particular, competition between ℏ and the potential parameters arises, as a result of which these distinctions are retained at low-lying levels in a sufficiently deep potential well for ℏ ≪ 1 and the boson and fermion energy spectra become identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento, 29, 380 (1963).

    MathSciNet  Google Scholar 

  2. V. G. Kadyshevsky, JETP, 19, 443, 597 (1964); Dokl. Akad. Nauk SSSR, 160, 573 (1965).

    Google Scholar 

  3. V. G. Kadyshevsky, Nucl. Phys. B, 6, 125 (1968); V. G. Kadyshevsky and M. D. Mateev, Nuovo Cimento A, 55, 275 (1968).

    Article  ADS  Google Scholar 

  4. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuovo Cimento A, 55, 233 (1968); V. G. Kadyshevsky, R. M. Mir-Kasimov, and M. Freeman, Yadernaya Fiz., 9, 646 (1969); M. Freeman, M. D. Mateev, and R. M. Mir-Kasimov, Nucl. Phys. B, 12, 197 (1969); V. G. Kadyshevsky, M. D. Mateev, and R. M. Mir-Kasimov, Sov. J. Nucl. Phys., 11, 388 (1970); V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Sov. J. Part. Nucl., 2, 69 (1972); N. B. Skachkov and I. L. Solovtsov, Sov. J. Part. Nucl., 9, 1 (1978); A. D. Donkov, V. G. Kadyshevsky, and M. D. Mateev, Theor. Math. Phys., 50, 236 (1982).

    Google Scholar 

  5. V. I. Savrin and V. B. Skachkov, Lett. Nuovo Cimento, 29, 363 (1980); V. I. Savrin, A. V. Sidorov, and V. B. Skachkov, Hadronic J., 4, 1642 (1981); V. A. Matveev, V. I. Savrin, A. N. Sissakian, and A. N. Tavkhelidze, Theor. Math. Phys., 132, 1119 (2002).

    Google Scholar 

  6. K. Sveshnikov, Phys. Lett. A, 136, 1 (1989); K. A. Sveshnikov, Theor. Math. Phys., 82, 37 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  7. K. A. Sveshnikov and P. K. Silaev, Theor. Math. Phys., 132, 1242 (2002).

    Article  MathSciNet  Google Scholar 

  8. C. Itzykson and J. B. Zuber, Quantum Field Theory, Vol. 1, MacGraw-Hill, New York (1980).

    Google Scholar 

  9. K. A. Sveshnikov, Theor. Math. Phys., 74, 251 (1988); 75, 482 (1988).

    Article  MathSciNet  Google Scholar 

  10. K. A. Sveshnikov and P. K. Silaev, Theor. Math. Phys., 108, 1019 (1996); K. Sveshnikov, P. Silaev, and I. Cherednikov, Modern Phys. Lett. A, 12, 465 (1997).

    Article  MathSciNet  Google Scholar 

  11. A. O. Gelfond, Calculus of Finite Differences [in Russian], Fizmatgiz, Moscow (1967); English transl., Hindustan Publ. Corp., Delhi (1971).

    Google Scholar 

  12. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], Gosudarstv. Izdat. Tekhn. Teor. Lit., Moscow (1949); English transl., Noordhoff, Groningen (1958); V. V. Voevodin, Numerical Methods of Algebra: Theory and Algorithms [in Russian], Nauka, Moscow (1966); V. V. Voevodin and E. E. Tyrtyshnikov, Numerical Processes with Toeplitz Matrices [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  13. K. A. Sveshnikov and P. K. Silaev, Theor. Math. Phys., 117, 1319 (1998); I. Yu. Malakhov, K. A. Sveshnikov, S. M. Fedorov, and M. F. Khalili, Theor. Math. Phys., 132, 1094 (2002); I. Yu. Malakhov and K. A. Sveshnikov, Theor. Math. Phys., 132, 1201 (2002).

    MathSciNet  Google Scholar 

  14. G. H. Hardy, Divergent Series, Clarendon, Oxford (1949).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 149, No. 3, pp. 427–456, December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sveshnikov, K.A., Silaev, P.K. Quasi-exact solution of the problem of relativistic bound states in the (1+1)-dimensional case. Theor Math Phys 149, 1665–1689 (2006). https://doi.org/10.1007/s11232-006-0150-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-006-0150-1

Keywords

Navigation