Skip to main content
Log in

Symmetries of Field Theories on the Noncommutative Plane

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We report new developments concerning the symmetry properties and their actions on special solutions allowed by certain field theory models on the noncommutative plane. In particular, we seek Galilean-invariant models. The analysis indicates that this requirement strongly restricts the admissible interactions. Moreover, if a scalar field is coupled to a gauge field, then a geometric phase emerges for vortexlike solutions transformed by Galilean boosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. R. Douglas and N. A. Nekrasov, Rev. Modern Phys., 73, 977 (2001).

    Article  Google Scholar 

  2. R. J. Szabo, Phys. Rep., 378, 207 (2003); hep-th/0109162 (2001).

    Article  Google Scholar 

  3. R. B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983).

    Article  Google Scholar 

  4. D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett., 53, 772 (1984).

    Article  Google Scholar 

  5. S. M. Girvin and T. Jach, Phys. Rev. A, 29, 5617 (1984).

    Google Scholar 

  6. P. A. Horvathy, L. Martina, and P. C. Stichel, “Enlarged Galilean symmetry of anyons and the Hall effect,” hep-th/0412090 (2004).

  7. M.-C. Chang and Q. Niu, Phys. Rev. B, 53, 7010 (1996).

    Article  Google Scholar 

  8. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, The Geometric Phase in Quantum Systems, Springer, Berlin (2003).

    Google Scholar 

  9. J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, Ann. Phys., 260, 224 (1997); 306, 78 (2003); hep-th/0207149 (2002).

    Article  Google Scholar 

  10. C. Duval and P. A. Horvathy, Phys. Lett. B, 479, 284 (2000); hep-th/0002233 (2000); J. Phys. A, 34, 10097 (2001); hep-th/0106089 (2001); P. A. Horvathy, Ann. Phys. 299, 128 (2002); hep-th/0201007 (2002).

    Article  Google Scholar 

  11. J.-M. Levy-Leblond, “Galilei group and Galilean invariance,” in: Group Theory and Applications (E. Loebl, ed.), Vol. 2, Acad. Press, New York (1971), p. 221; A. Ballesteros, N. Gadella, and M. del Olmo, J. Math. Phys., 33, 3379 (1992); Y. Brihaye, C. Gonera, S. Giller, and P. Kosinski, “Galilean invariance in 2+1 dimensions,” hep-th/9503046 (1995); D. R. Grigore, J. Math. Phys., 37, 240, 460 (1996).

    Google Scholar 

  12. L. Susskind, “The quantum Hall fluid and non-commutative Chern Simons theory,” hep-th/0101029 (2001).

  13. G. S. Lozano, E. F. Moreno, and F. A. Schaposnik, JHEP, 0102, 036 (2001); hep-th/0012266 (2000); F. A. Schaposnik, “Three lectures on noncommutative field theories,” hep-th/0408132 (2004).

    Article  Google Scholar 

  14. D. Bak, S. K. Kim, K.-S. Soh, and J. H. Yee, Phys. Rev. D, 64, 025018 (2001).

    Article  Google Scholar 

  15. D. Bak, K. Lee, and J.-H. Park, Phys. Rev. Lett., 87, 030402 (2001).

    Article  PubMed  Google Scholar 

  16. D. Bak, S. K. Kim, K.-S. Soh, and J. H. Yee, Phys. Rev. Lett., 85, 3087 (2000).

    PubMed  Google Scholar 

  17. P. A. Horvathy, L. Martina, and P. C. Stichel, Phys. Lett. B, 564, 149 (2003).

    Article  Google Scholar 

  18. P. A. Horvathy, L. Martina, and P. C. Stichel, Nucl. Phys. B, 673, 301 (2003).

    Article  Google Scholar 

  19. P. A. Horvathy and P. C. Stichel, Phys. Lett. B, 583, 353 (2004).

    Article  Google Scholar 

  20. L. Hadasz, U. Lindstrom, M. Rocek, and R. von Unge, Phys. Rev. D, 69, 105020 (2004).

    Article  Google Scholar 

  21. R. Jackiw, Phys. Today, 25, 23 (1980); U. Niederer, Helv. Phys. Acta, 45, 802 (1972); C. R. Hagen, Phys. Rev. D, 5, 377 (1972).

    Google Scholar 

  22. E. Langmann and R. J. Szabo, Phys. Lett. B, 533, 168 (2002); E. Langmann, Nucl. Phys. B, 654, 404 (2003); E. Langmann, R. J. Szabo, and K. Zarembo, “Exact solution of noncommutative field theory in background magnetic fields,” hep-th/0303082 (2003).

    Article  Google Scholar 

  23. N. Seiberg and E. Witten, JHEP, 09, 032 (1999).

    Article  Google Scholar 

  24. R. Jackiw and S.-Y. Pi, Phys. Rev. Lett., 88, 1116031 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 1, pp. 64–73, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvathy, P.A., Martina, L. & Stichel, P.C. Symmetries of Field Theories on the Noncommutative Plane. Theor Math Phys 144, 935–943 (2005). https://doi.org/10.1007/s11232-005-0120-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0120-z

Keywords

Navigation