Skip to main content
Log in

An improved gazelle optimization algorithm using dynamic opposition-based learning and chaotic mapping combination for solving optimization problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The gazelle optimization algorithm (GOA) is an iterative optimization method inspired by the agile movements of gazelles, employing adaptive step sizes and velocity adjustments for rapid convergence in continuous search spaces. However, GOA tends to lack diversity, leading to issues like local minima trapping and premature convergence. This paper addresses these limitations by introducing dynamic opposition-based learning (OBL) and incorporating a balanced sine-control-logistic chaotic mapping system, resulting in the improved GOA (IGOA). Dynamic OBL accelerates the search process, improving learning and selecting superior candidate solutions, while chaotic mapping in chaotic local search widens ranges for exploration and local optima escape. Evaluating IGOA against seven algorithms, including GOA and others, across 31 general test functions, the results consistently showcase IGOA’s superior efficiency in achieving solutions closest to optima, early convergence, and hit rate when compared to alternative algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in the article.

References

  1. Abdel-Basset M, Shawky LA (2019) Flower pollination algorithm: a comprehensive review. Artif Intell Rev 52:2533–2557. https://doi.org/10.1007/s10462-018-9624-4

    Article  Google Scholar 

  2. Abualigah L, Yousri D, Abd Elaziz M et al (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157(107):250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  3. Abualigah L, Abd Elaziz M, Sumari P et al (2022) Reptile search algorithm (rsa): a nature-inspired meta-heuristic optimizer. Expert Syst Appl 191(116):158. https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  4. Abualigah L, Elaziz MA, Khasawneh AM et al (2022) Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06747-4

    Article  Google Scholar 

  5. Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput Appl 35(5):4099–4131. https://doi.org/10.1007/s00521-022-07854-6

    Article  Google Scholar 

  6. Ahandani MA, Abbasfam J, Kharrati H (2022) Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms. Appl Intell 52(11):13082–13096. https://doi.org/10.1007/s10489-022-03223-x

    Article  Google Scholar 

  7. Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10–15. https://doi.org/10.1214/ss/1177011077

    Article  Google Scholar 

  8. Cheng MY, Lien LC (2012) Hybrid artificial intelligence-based pba for benchmark functions and facility layout design optimization. Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000163

    Article  Google Scholar 

  9. Chu SC, Du ZG, Pan JS (2020) Symbiotic organism search algorithm with multi-group quantum-behavior communication scheme applied in wireless sensor networks. Appl Sci 10(3):930. https://doi.org/10.3390/app10030930

    Article  Google Scholar 

  10. Chu SC, Du ZG, Peng YJ et al (2021) Fuzzy hierarchical surrogate assists probabilistic particle swarm optimization for expensive high dimensional problem. Knowl Based Syst 220(106):939. https://doi.org/10.1016/j.knosys.2021.106939

    Article  Google Scholar 

  11. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  Google Scholar 

  12. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203. https://doi.org/10.1016/S1474-0346(02)00011-3

    Article  Google Scholar 

  13. Coello Coello CA, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36(2):219–236. https://doi.org/10.1080/03052150410001647966

    Article  Google Scholar 

  14. Delahaye D, Chaimatanan S, Mongeau M (2019) Simulated annealing: from basics to applications. In: Handbook of metaheuristics, pp 1–35. https://doi.org/10.1007/978-3-319-91086-4_1

  15. Ding W, Chang S, Bao S, et al (2023a) Accurate rss-based localization using an opposition-based learning simulated annealing algorithm. arXiv:2307.11950, https://doi.org/10.48550/arXiv.2307.11950

  16. Ding W, Chang S, Yang X et al (2023) Genetic algorithm with opposition-based learning and redirection for secure localization using ToA measurements in wireless networks. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2023.3303353

    Article  Google Scholar 

  17. Dong W, Kang L, Zhang W (2017) Opposition-based particle swarm optimization with adaptive mutation strategy. Soft Comput 21:5081–5090. https://doi.org/10.1007/s00500-016-2102-5

    Article  Google Scholar 

  18. Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Handbook of metaheuristics, pp 250–285. https://doi.org/10.1007/0-306-48056-5_9

  19. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  20. Du ZG, Pan JS, Chu SC et al (2020) Improved binary symbiotic organism search algorithm with transfer functions for feature selection. IEEE Access 8:225730–225744. https://doi.org/10.1109/ACCESS.2020.3045043

    Article  Google Scholar 

  21. Du ZG, Pan JS, Chu SC et al (2020) Quasi-affine transformation evolutionary algorithm with communication schemes for application of rssi in wireless sensor networks. IEEE Access 8:8583–8594. https://doi.org/10.1109/ACCESS.2020.2964783

    Article  Google Scholar 

  22. Du ZG, Pan JS, Chu SC et al (2022) Multi-group discrete symbiotic organisms search applied in traveling salesman problems. Soft Comput 26(9):4363–4373. https://doi.org/10.1007/s00500-022-06862-x

    Article  Google Scholar 

  23. Duan Y, Chen N, Chang L et al (2022) CAPSO: Chaos adaptive particle swarm optimization algorithm. IEEE Access 10:29393–29405. https://doi.org/10.1109/ACCESS.2022.3158666

    Article  Google Scholar 

  24. Elbes M, Alzubi S, Kanan T et al (2019) A survey on particle swarm optimization with emphasis on engineering and network applications. Evol Intel 12:113–129. https://doi.org/10.1007/s12065-019-00210-z

    Article  Google Scholar 

  25. Ezugwu AE, Agushaka JO, Abualigah L et al (2022) Prairie dog optimization algorithm. Neural Comput Appl 34(22):20017–20065. https://doi.org/10.1007/s00521-022-07530-9

    Article  Google Scholar 

  26. Faris H, Aljarah I, Al-Betar MA et al (2018) Gray wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30:413–435. https://doi.org/10.1007/s00521-017-3272-5

    Article  Google Scholar 

  27. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92

    Article  MathSciNet  Google Scholar 

  28. Gad AG (2022) Particle swarm optimization algorithm and its applications: a systematic review. Arch Comput Methods Eng 29(5):2531–2561. https://doi.org/10.1007/s11831-021-09694-4

    Article  MathSciNet  Google Scholar 

  29. Gao S, Yu Y, Wang Y et al (2019) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern Syst 51(6):3954–3967. https://doi.org/10.1109/TSMC.2019.2956121

    Article  Google Scholar 

  30. Gen M, Lin L (2023) Genetic algorithms and their applications. In: Springer handbook of engineering statistics. Springer, pp 635–674. https://doi.org/10.1007/978-1-4471-7503-2_33

  31. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol Comput 48:1–24. https://doi.org/10.1016/j.swevo.2019.03.004

    Article  Google Scholar 

  32. Gong W, Wang S (2009) Chaos ant colony optimization and application. In: 2009 fourth international conference on internet computing for science and engineering. IEEE, pp 301–303. https://doi.org/10.1109/ICICSE.2009.38

  33. Guo Z, Zhang W, Wang S (2021) Improved gravitational search algorithm based on chaotic local search. Int J Bio-Inspir Comput 17(3):154–164. https://doi.org/10.1504/IJBIC.2021.114873

    Article  Google Scholar 

  34. Gupta S, Deep K (2019) An efficient gray wolf optimizer with opposition-based learning and chaotic local search for integer and mixed-integer optimization problems. Arab J Sci Eng 44:7277–7296. https://doi.org/10.1007/s13369-019-03806-w

    Article  Google Scholar 

  35. Gutjahr WJ (2010) Convergence analysis of metaheuristics. Springer, Boston, pp 159–187. https://doi.org/10.1007/978-1-4419-1306-7_6

    Book  Google Scholar 

  36. Hasanien HM, Alsaleh I, Tostado-Véliz M et al (2023) Optimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithm. Energy 285(129):509. https://doi.org/10.1016/j.energy.2023.129509

    Article  Google Scholar 

  37. Hashim FA, Mostafa RR, Hussien AG et al (2023) Fick’s law algorithm: a physical law-based algorithm for numerical optimization. Knowl Based Syst 260(110):146. https://doi.org/10.1016/j.knosys.2022.110146

    Article  Google Scholar 

  38. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  39. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186(2):1407–1422. https://doi.org/10.1016/j.amc.2006.07.134

    Article  MathSciNet  Google Scholar 

  40. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  41. Hua Z, Zhou Y (2015) Dynamic parameter-control chaotic system. IEEE Trans Cybern 46(12):3330–3341. https://doi.org/10.1109/TCYB.2015.2504180

    Article  Google Scholar 

  42. Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356. https://doi.org/10.1016/j.amc.2006.07.105

    Article  MathSciNet  Google Scholar 

  43. Hussien AG, Amin M (2022) A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-021-01326-4

    Article  Google Scholar 

  44. Jose MR, Vigila SMC (2023) F-CAPSO: fuzzy chaos adaptive particle swarm optimization for energy-efficient and secure data transmission in MANET. Expert Syst Appl 234(120):944. https://doi.org/10.1016/j.eswa.2023.120944

    Article  Google Scholar 

  45. Joshi SK (2023) Chaos embedded opposition based learning for gravitational search algorithm. Appl Intell 53(5):5567–5586. https://doi.org/10.1007/s10462-022-10343-w

    Article  Google Scholar 

  46. Karaboga D, Gorkemli B, Ozturk C et al (2014) A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  47. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  48. Khishe M (2023) Greedy opposition-based learning for chimp optimization algorithm. Artif Intell Rev 56(8):7633–7663. https://doi.org/10.3390/e24121826

    Article  Google Scholar 

  49. Khosravi H, Amiri B, Yazdanjue N et al (2022) An improved group teaching optimization algorithm based on local search and chaotic map for feature selection in high-dimensional data. Expert Syst Appl 204(117):493. https://doi.org/10.1016/j.eswa.2022.117493

    Article  Google Scholar 

  50. Korkmaz S, Ali NBH, Smith IF (2012) Configuration of control system for damage tolerance of a tensegrity bridge. Adv Eng Inform 26(1):145–155. https://doi.org/10.1016/j.aei.2011.10.002

    Article  Google Scholar 

  51. Lampinen J (2002) A constraint handling approach for the differential evolution algorithm. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No. 02TH8600). IEEE, pp 1468–1473. https://doi.org/10.1109/CEC.2002.1004459

  52. Liu B, Wang L, Jin YH et al (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271. https://doi.org/10.1016/j.chaos.2004.11.095

    Article  Google Scholar 

  53. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23. https://doi.org/10.1016/j.swevo.2017.09.010

    Article  Google Scholar 

  54. Mirjalili S, Mirjalili S (2019) Genetic algorithm. In: Evolutionary algorithms and neural networks: theory and applications, pp 43–55. https://doi.org/10.1007/978-3-319-93025-1_4

  55. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  56. Pan Q, Tang J, Wang H et al (2022) SFSADE: an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10099-9

    Article  Google Scholar 

  57. Pan Q, Tang J, Zhan J et al (2023) Bacteria phototaxis optimizer. Neural Comput Appl 35(18):13433–13464. https://doi.org/10.1007/s00521-023-08391-6

    Article  Google Scholar 

  58. Pant M, Zaheer H, Garcia-Hernandez L et al (2020) Differential evolution: a review of more than two decades of research. Eng Appl Artif Intell 90(103):479. https://doi.org/10.1016/j.engappai.2020.103479

    Article  Google Scholar 

  59. Pira E (2023) City councils evolution: a socio-inspired metaheuristic optimization algorithm. J Amb Intell Human Comput 14(9):12207–12256. https://doi.org/10.1007/s12652-022-03765-5

    Article  Google Scholar 

  60. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  61. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  62. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396. https://doi.org/10.1109/TEVC.2003.814902

    Article  Google Scholar 

  63. Sarangi P, Mohapatra P (2023) Evolved opposition-based mountain gazelle optimizer to solve optimization problems. J King Saud Univ Comput Inf Sci 35(10):101812. https://doi.org/10.1016/j.jksuci.2023.101812

    Article  Google Scholar 

  64. Sayed GI, Darwish A, Hassanien AE (2018) A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. J Exp Theor Artif Intell 30(2):293–317

    Article  Google Scholar 

  65. Sharma SR, Kaur M, Singh B (2023) A self-adaptive bald eagle search optimization algorithm with dynamic opposition-based learning for global optimization problems. Expert Syst 40(2):e13170. https://doi.org/10.1111/exsy.13170

    Article  Google Scholar 

  66. Sulaiman MH, Mustaffa Z, Saari MM et al (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87(103):330. https://doi.org/10.1016/j.engappai.2019.103330

    Article  Google Scholar 

  67. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). IEEE, pp 695–701. https://doi.org/10.1109/CIMCA.2005.1631345

  68. Ventresca M, Tizhoosh HR (2007) Simulated annealing with opposite neighbors. In: 2007 IEEE symposium on foundations of computational intelligence. IEEE, pp 186–192. https://doi.org/10.1109/FOCI.2007.372167

  69. Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22:387–408. https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  70. Wang Y, Liu H, Ding G et al (2023) Adaptive chimp optimization algorithm with chaotic map for global numerical optimization problems. J Supercomput 79(6):6507–6537. https://doi.org/10.1007/s11227-022-04886-6

    Article  Google Scholar 

  71. Xia X (2012) Particle swarm optimization method based on chaotic local search and roulette wheel mechanism. Phys Procedia 24:269–275. https://doi.org/10.1016/j.phpro.2012.02.040

    Article  Google Scholar 

  72. Xu Y, Yang Z, Li X et al (2020) Dynamic opposite learning enhanced teaching-learning-based optimization. Knowl-Based Syst 188(104):966. https://doi.org/10.1016/j.energy.2023.129509

    Article  Google Scholar 

  73. Yang XS (2020) Nature-inspired optimization algorithms: challenges and open problems. J Comput Sci 46(101):104. https://doi.org/10.1016/j.jocs.2020.101104

    Article  MathSciNet  Google Scholar 

  74. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24:169–174. https://doi.org/10.1007/s00521-013-1367-1

    Article  Google Scholar 

  75. Yang XS, He X (2013) Bat algorithm: literature review and applications. Int J Bio-insp Comput 5(3):141–149. https://doi.org/10.1504/IJBIC.2013.055093

    Article  Google Scholar 

  76. Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36–50. https://doi.org/10.1504/IJSI.2013.055801

    Article  Google Scholar 

  77. Yang Z, Cai Y, Li G (2022) Improved gravitational search algorithm based on adaptive strategies. Entropy 24(12):1826. https://doi.org/10.3390/e24121826

    Article  MathSciNet  Google Scholar 

  78. Yussif AFS, Twumasi E, Frimpong EA (2023) Modified mountain gazelle optimizer based on logistic chaotic mapping and truncation selection. Int Res J Eng Technol 10:1769–1776

    Google Scholar 

  79. Zhao W, Wang L, Mirjalili S (2022) Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications. Comput Methods Appl Mech Eng 388(114):194. https://doi.org/10.1016/j.cma.2021.114194

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

Atiyeh Abdollahpourazad has worked on the algorithm improvement, implementation, and literature review of the research topic. Alireza Rouhi and Einollah Pira have worked on the innovations, design, implementation, evaluation, and revision of the paper.

Corresponding author

Correspondence to Alireza Rouhi.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahpour, A., Rouhi, A. & Pira, E. An improved gazelle optimization algorithm using dynamic opposition-based learning and chaotic mapping combination for solving optimization problems. J Supercomput 80, 12813–12843 (2024). https://doi.org/10.1007/s11227-024-05930-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-024-05930-3

Keywords

Navigation