Skip to main content
Log in

A supercomputing method for large-scale optimization: a feedback biogeography-based optimization with steepest descent method

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To apply biogeography-based optimization (BBO) to large scale optimization problems, this paper proposes a novel BBO variant based on feedback differential evolution mechanism and steepest descent method, referred to as FBBOSD. Firstly, the immigration refusal mechanism is proposed to eliminate the damage of inferior solutions to superior solutions. Secondly, the dynamic hybrid migration operator is designed to balance the exploration and exploitation, which makes BBO suitable for high-dimensional environment. Thirdly, the feedback differential evolution mechanism is designed to make FBBOSD can select mutation modes intelligently. Finally, the steepest descent method is creatively combined with BBO, which further improves the convergence accuracy. Meanwhile, a sequence convergence model is established to prove the convergence of FBBOSD. Quantitative evaluations: FBBOSD is compared with BBO, seven BBO variants and seven state-of-the-art evolutionary algorithms, respectively. The experimental results on 24 benchmark functions and CEC2017 show that FBBOSD outperforms all compared algorithms, and the dimension of solving optimization problems can reach 10,000. Then, FBBPOSD is applied to engineering design problems. The simulation results demonstrate that it is also effective on constrained optimization problems. In short, FBBOSD has excellent performance and outstanding stability, which is a new algorithm worthy of adoption and promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data in Sect. 6 are obtained under the same experimental environment. Then, all the source programs of the compared BBO variants in Sect. 6.3 are coded according to their original references. The simulation of 24 benchmark functions in Table 3 can be downloaded from http://www.sfu.ca/~ssurjano/emulat.html. The simulation of CEC2017 test set can be downloaded from http://www5.zzu.edu.cn/cilab/Benchmark/wysyhwtcsj.htm. The simulation of GWO, WOA, MSA, HHO, AOA, AVOA and HBA in Sect. 6.5 can be downloaded from https://mianbaoduo.com/o/bread/mbd-YZaTlppv. The data cited in Sect. 6.7 are listed in references. We solemnly declare that all data in this paper are true and valid.

References

  1. Tan Z, Li K, Wang Y (2021) Differential evolution with adaptive mutation strategy based on fitness landscape analysis. Inf Sci 549:142–163. https://doi.org/10.1016/j.ins.2020.11.023

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao Y, Zhang H, Li W et al (2018) Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans Evol Comput 23(4):718–731. https://doi.org/10.1109/TEVC.2018.2885075

    Article  Google Scholar 

  3. Mohamed AW, Hadi AA, Fattouh AM et al (2017) LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 145–152. https://doi.org/10.1109/CEC.2017.7969307

  4. He L, Cao Y, Li W et al (2022) Optimization of energy-efficient open shop scheduling with an adaptive multi-objective differential evolution algorithm. Appl Soft Comput 2022:108459. https://doi.org/10.1016/j.asoc.2022.108459

    Article  Google Scholar 

  5. Biedrzycki R (2017) A version of IPOP-CMA-ES algorithm with midpoint for CEC 2017 single objective bound constrained problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 1489–1494. https://doi.org/10.1109/CEC.2017.7969479

  6. Lodewijks G, Cao Y, Zhao N et al (2021) Reducing \({\text{CO}}_{2}\) emissions of an airport baggage handling transport system using a particle swarm optimization algorithm. IEEE Access 9:121894–121905. https://doi.org/10.1109/ACCESS.2021.3109286

    Article  Google Scholar 

  7. Ali AF, Tawhid MA (2017) A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems. Ain Shams Eng J 8(2):191–206. https://doi.org/10.1016/j.asej.2016.07.008

    Article  Google Scholar 

  8. Chakraborty S, Saha AK, Chakraborty R et al (2021) An enhanced whale optimization algorithm for large scale optimization problems. Knowl Based Syst 233:107543. https://doi.org/10.1016/j.knosys.2021.107543

    Article  Google Scholar 

  9. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  10. Li X, Yao X (2011) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224. https://doi.org/10.1109/TEVC.2011.2112662

    Article  Google Scholar 

  11. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  12. Yang Q, Chen WN, Da Deng J et al (2017) A level-based learning swarm optimizer for large-scale optimization. IEEE Trans Evol Comput 22(4):578–594. https://doi.org/10.1109/TEVC.2017.2743016

    Article  Google Scholar 

  13. Long W, Wu T, Liang X et al (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126. https://doi.org/10.1016/j.eswa.2018.11.032

    Article  Google Scholar 

  14. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  15. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  16. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and artificial intelligence. MIT Press, Cambridge

    MATH  Google Scholar 

  17. Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano

  18. Ma H, Simon D, Siarry P et al (2017) Biogeography-based optimization: a 10-year review. IEEE Trans Emerg Top Comput Intell 1(5):391–407. https://doi.org/10.1109/TETCI.2017.2739124

    Article  Google Scholar 

  19. Guo W, Chen M, Wang L et al (2017) A survey of biogeography-based optimization. Neural Computi Appl 28:1909–1926. https://doi.org/10.1007/s00521-016-2179-x

    Article  Google Scholar 

  20. Zhang Z, Gao Y, Zuo W (2022) A dual biogeography-based optimization algorithm for solving high-dimensional global optimization problems. IEEE Access 10:55988–56016. https://doi.org/10.1109/ACCESS.2022.3177218

    Article  Google Scholar 

  21. Ma HP (2010) An analysis of the equilibrium of migration models for biogeography-based optimization. Inf Sci 180(18):3444–3464. https://doi.org/10.1016/j.ins.2010.05.035

    Article  MATH  Google Scholar 

  22. Yang GP, Liu SY, Zhang JK et al (2013) Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl Intell 39(1):132–143. https://doi.org/10.1007/s10489-012-0398-0

    Article  Google Scholar 

  23. Zheng YJ, Ling HF, Wu XB et al (2014) Localized biogeography-based optimization. Soft Comput 18(11):2323–2334. https://doi.org/10.1007/s00500-013-1209-1

    Article  Google Scholar 

  24. Feng Q, Liu S, Zhang J et al (2017) Improved biogeography-based optimization with random ring topology and Powell’s method. Appl Math Modell 41:630–649. https://doi.org/10.1016/j.apm.2016.09.020

    Article  MathSciNet  MATH  Google Scholar 

  25. Li LL, Yang YF, Wang CH et al (2018) Biogeography-based optimization based on population competition strategy for solving the substation location problem. Expert Syst Appl 97:290–302. https://doi.org/10.1016/j.eswa.2017.12.039

    Article  Google Scholar 

  26. Reihanian A, Feizi-Derakhshi MR, Aghdasi HS (2019) NBBO: a new variant of biogeography-based optimization with a novel framework and a two-phase migration operator. Inf Sci 504:178–201. https://doi.org/10.1016/j.ins.2019.07.054

    Article  Google Scholar 

  27. Zhang XM, Wang D, Fu Z et al (2020) Novel biogeography-based optimization algorithm with hybrid migration and global-best Gaussian mutation. Appl Math Modell 86:74–91. https://doi.org/10.1016/j.apm.2020.05.016

    Article  MathSciNet  MATH  Google Scholar 

  28. Savsani P, Jhala RL, Savsani V (2014) Effect of hybridizing biogeography-based optimization (BBO) technique with artificial immune algorithm (AIA) and ant colony optimization (ACO). Appl Soft Comput 21:542–553. https://doi.org/10.1016/j.asoc.2014.03.011

    Article  Google Scholar 

  29. Dasgupta D (2006) Advances in artificial immune systems. IEEE Comput Intell Mag 1(4):40–49. https://doi.org/10.1016/j.future.2009.10.004

    Article  Google Scholar 

  30. Farswan P, Bansal JC (2019) Fireworks-inspired biogeography-based optimization. Soft Comput 23(16):7091–7115. https://doi.org/10.1007/s00500-018-3351-2

    Article  Google Scholar 

  31. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International Conference in Swarm Intelligence. Springer, Berlin, pp 355–364. https://doi.org/10.1007/978-3-642-13495-1_44

  32. Xiong G, Shi D (2018) Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects. Energy 157:424–435. https://doi.org/10.1016/j.energy.2018.05.180

    Article  Google Scholar 

  33. Shi Y (2011) Brain storm optimization algorithm. In: International Conference in Swarm Intelligence. Springer, Berlin, pp 303–309. https://doi.org/10.1007/978-3-642-21515-5_36

  34. Emami H (2021) Stock exchange trading optimization algorithm: a human-inspired method for global optimization. J Supercomput 78:1–50. https://doi.org/10.1007/s11227-021-03943-w

    Article  Google Scholar 

  35. Yang Z, Deng LB, Wang Y et al (2021) Aptenodytes Forsteri optimization: algorithm and applications. Knowl Based Syst 232:107483. https://doi.org/10.1016/j.knosys.2021.107483

    Article  Google Scholar 

  36. Braik MS (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst Appl 174(1):114685. https://doi.org/10.1016/j.eswa.2021.114685

    Article  Google Scholar 

  37. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng Early 1 158:107408. https://doi.org/10.1016/j.cie.2021.107408

    Article  Google Scholar 

  38. Al-Betar MA, Alyasseri ZAA, Awadallah MA et al (2021) Coronavirus herd immunity optimizer (CHIO). Neural Comput Appl 33(10):5011–5042. https://doi.org/10.1007/s00521-020-05296-6

    Article  Google Scholar 

  39. Shirani MR, Safi-Esfahani F (2021) Dynamic scheduling of tasks in cloud computing applying dragonfly algorithm, biogeography-based optimization algorithm and Mexican hat wavelet. J Supercomput 77(2):1214–1272. https://doi.org/10.1007/s11227-020-03317-8

    Article  Google Scholar 

  40. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  41. Zhang X, Kang Q, Cheng J et al (2018) A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Appl Soft Comput 67:197–214. https://doi.org/10.1016/j.asoc.2018.02.049

    Article  Google Scholar 

  42. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  43. Zandieh M, Roumani M (2017) A biogeography-based optimization algorithm for order acceptance and scheduling. J Ind Prod Eng 34(4):312–321. https://doi.org/10.1080/21681015.2017.1305997

    Article  Google Scholar 

  44. Zhao F, Du S, Zhang Y et al (2020) Hybrid biogeography-based optimization with enhanced mutation and CMA-ES for global optimization problem. Serv Oriented Comput Appl 14(1):65–73. https://doi.org/10.1007/s11761-019-00284-8

    Article  Google Scholar 

  45. An Y, Chen X, Li Y et al (2021) An improved non-dominated sorting biogeography-based optimization algorithm for the (hybrid) multi-objective flexible job-shop scheduling problem. Appl Soft Comput 99:106869. https://doi.org/10.1016/j.asoc.2020.106869

    Article  Google Scholar 

  46. Rostami O, Kaveh M (2021) Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning. Comput Geosci 25(3):911–930. https://doi.org/10.1007/s10596-020-10030-1

    Article  MATH  Google Scholar 

  47. Jain A, Rai S, Srinivas R et al (2022) Bioinspired modeling and biogeography-based optimization of electrocoagulation parameters for enhanced heavy metal removal. J Cleaner Prod 338:130622. https://doi.org/10.1016/j.jclepro.2022.130622

    Article  Google Scholar 

  48. Goel L (2022) A novel approach for face recognition using biogeography based optimization with extinction and evolution. Multimed Tools Appl 81:1–28. https://doi.org/10.1007/s11042-022-12158-x

    Article  Google Scholar 

  49. Li X, Chen J, Zhou D et al (2022) A modified biogeography-based optimization algorithm based on cloud theory for optimizing a fuzzy PID controller. Optim Control Appl Methods 42:722–739. https://doi.org/10.1002/oca.2848

    Article  MathSciNet  Google Scholar 

  50. Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: a survey. Inf Sci 295:407–428. https://doi.org/10.1016/j.ins.2014.10.042

    Article  MathSciNet  Google Scholar 

  51. Zheng YJ, Ling HF, Shi HH et al (2014) Emergency railway wagon scheduling by hybrid biogeography-based optimization. Comput Oper Res 43:1–8. https://doi.org/10.1016/j.cor.2013.09.002

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang X, Kang Q, Tu Q et al (2019) Efficient and merged biogeography-based optimization algorithm for global optimization problems. Soft Comput 23(12):4483–4502. https://doi.org/10.1007/s00500-018-3113-1

    Article  Google Scholar 

  53. Xiong G, Li Y, Chen J et al (2014) Polyphyletic migration operator and orthogonal learning aided biogeography-based optimization for dynamic economic dispatch with valve-point effects. Energy Convers Manag 80:457–468. https://doi.org/10.1016/j.enconman.2013.12.052

    Article  Google Scholar 

  54. Chen X, Tianfield H, Du W et al (2016) Biogeography-based optimization with covariance matrix based migration. Appl Soft Comput 45:71–85. https://doi.org/10.1016/j.asoc.2016.04.022

    Article  Google Scholar 

  55. Zhao F, Qin S, Zhang Y et al (2019) A two-stage differential biogeography-based optimization algorithm and its performance analysis. Expert Syst Appl 115:329–345. https://doi.org/10.1016/j.eswa.2018.08.012

    Article  Google Scholar 

  56. Feng J, Zhang J, Wang C et al (2020) Self-adaptive collective intelligence-based mutation operator for differential evolution algorithms. J Supercomput 76(2):876–896. https://doi.org/10.1007/s11227-019-03044-9

    Article  Google Scholar 

  57. Pant M, Zaheer H, Garcia-Hernandez L et al (2020) Differential evolution: a review of more than two decades of research. Eng Appl Artif Intell 90:103479. https://doi.org/10.1016/j.engappai.2020.103479

    Article  Google Scholar 

  58. Opara KR, Arabas J (2019) Differential evolution: a survey of theoretical analyses. Swarm Evol Comput 44:546–558. https://doi.org/10.1016/j.swevo.2018.06.010

    Article  Google Scholar 

  59. Tan Z, Li K, Tian Y et al (2021) A novel mutation strategy selection mechanism for differential evolution based on local fitness landscape. J Supercomput 77(6):5726–5756. https://doi.org/10.1007/s11227-020-03482-w

    Article  Google Scholar 

  60. Zhang X, Wang D, Chen H (2019) Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation. IEEE Access 7:28810–28825. https://doi.org/10.1109/ACCESS.2019.2901849

    Article  Google Scholar 

  61. Sang X, Liu X, Zhang Z et al (2021) Improved biogeography-based optimization algorithm by hierarchical tissue-like P system with triggering ablation rules. Math Probl Eng 2021:6655614. https://doi.org/10.1155/2021/6655614

    Article  Google Scholar 

  62. Awad N, Ali M, Liang J et al (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on singe objective bound constrained real-parameter numerical optimization. Technical report. Nanyang Technological University, Singapore

  63. Garg V, Deep K (2016) Performance of Laplacian biogeography-based optimization algorithm on CEC 2014 continuous optimization benchmarks and camera calibration problem. Swarm Evol Comput 27:132–144. https://doi.org/10.1016/j.swevo.2015.10.006

    Article  Google Scholar 

  64. Farrokh Ghatte H (2021) A hybrid of firefly and biogeography-based optimization algorithms for optimal design of steel frames. Arab J Sci Eng 46(5):4703–4717. https://doi.org/10.1007/s13369-020-05118-w

    Article  Google Scholar 

  65. Mohamed AAA, Mohamed YS, El-Gaafary AAM et al (2017) Optimal power flow using moth swarm algorithm. Electr Power Syst Res 142:190–206. https://doi.org/10.1016/j.epsr.2016.09.025

    Article  Google Scholar 

  66. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  67. Hashim FA, Hussain K, Houssein EH et al (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51(3):1531–1551. https://doi.org/10.1007/s10489-020-01893-z

    Article  Google Scholar 

  68. Hashim FA, Houssein EH, Hussain K et al (2022) Honey Badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110. https://doi.org/10.1016/j.matcom.2021.08.013

    Article  MathSciNet  MATH  Google Scholar 

  69. Morales-Castañeda B, Zaldivar D, Cuevas E et al (2020) A better balance in metaheuristic algorithms: does it exist? Swarm Evol Comput 54:100671. https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  70. Wang H, Hu Z, Sun Y et al (2020) A novel modified BSA inspired by species evolution rule and simulated annealing principle for constrained engineering optimization problems. Neural Comput Appl 31(8):4157–4184. https://doi.org/10.1007/s00521-017-3329-5

    Article  Google Scholar 

  71. Dhiman G, Garg M, Nagar A et al (2021) A novel algorithm for global optimization: rat swarm optimizer. J Ambient Intell Hum Comput 12(8):8457–8482. https://doi.org/10.1007/s12652-020-02580-0

    Article  Google Scholar 

  72. Migallón H, Jimeno-Morenilla A, Rico H et al (2021) Multi-level parallel chaotic Jaya optimization algorithms for solving constrained engineering design problems. J Supercomput 77(11):12280–12319. https://doi.org/10.1007/s11227-021-03737-0

    Article  Google Scholar 

  73. Han X, Yue L, Dong Y et al (2020) Efficient hybrid algorithm based on moth search and fireworks algorithm for solving numerical and constrained engineering optimization problems. J Supercomput 76(12):9404–9429. https://doi.org/10.1007/s11227-020-03212-2

    Article  Google Scholar 

  74. Barshandeh S, Piri F, Sangani SR (2020) HMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Eng Comput 2020:1–45. https://doi.org/10.1007/s00366-020-01120-w

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Ningxia Natural Science Foundation “Several Swarm Intelligence Algorithms and Their Application” [2022AAC02043], the 2022 Graduate Innovation Project of North Minzu University [YCX22095], the National Natural Science Foundation of China under Grant [11961001], the Construction Project of First-class Subjects in Ningxia Higher Education [NXYLXK2017B09], and the Major Proprietary Funded Project of North Minzu University [ZDZX201901].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuelin Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All authors guarantee that the paper is legitimate and belongs to their own scientific research results. No copying, plagiarism, infringement, data forgery and other bad behavior, not involve state secrets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gao, Y. & Guo, E. A supercomputing method for large-scale optimization: a feedback biogeography-based optimization with steepest descent method. J Supercomput 79, 1318–1373 (2023). https://doi.org/10.1007/s11227-022-04644-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04644-8

Keywords

Navigation