Skip to main content
Log in

Persuasive phytoestrogenic imidazole-based selenium N-heterocyclic carbenes: electronic, structural, and in silico anticancer potential investigations

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The cellular antioxidant defense mechanism against reactive oxygen species (ROS) depends on selenium, a vital trace element. Numerous selenium-containing compounds have recently displayed a wide range of biological characteristics that make them intriguing scaffolds in medicinal chemistry. Among the several categories of phytoestrogens, Imidazole-Based Selenium N-heterocyclic carbene Compounds (IM-SeNHC) have drawn the most scientific attention. Several IM-SeNHC compounds were chosen for this theoretical study analysis. The goal of this study was to govern the binding capacity of each of the selected IM-SeNHC that have been identified as inhibitors of the proteins responsible for cancer EGFR, hTrkA, HER2, and cMet (PDB codes: 5GTY, 6PL2, 7JXH, and 3RHK, respectively). DFT and molecular docking investigations were carried out employing in silico software for their virtual screening. Conferring to the docking study, ligand 6 formed hydrogen bonds with protein 7JXH’s active pocket, followed by ligand 8 with protein 3RHK and 5GTY, and ligand 9 with protein 6PL2. Conferring to trends in polarizability and dipole moment, the energy difference values (0.299 eV and 0.277 eV) of IM-SeNHC compounds (3 and 8) show the rise in chemical potential, reactivity, and bioactivity brought on by the most stable structural configurations. Additionally, ADME was investigated to discover the pharmacokinetic characteristics of the targeted moieties. The cardiotoxicity analysis was performed, and confidence percentages accompanying these predictions vary across the dataset, ranging from around 57 to 99.9%, indicating differing levels of certainty in the predictions. This research showed that these ligands have a promising future in cancer therapy medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Bisoyi P (2022) A brief tour guide to cancer disease. in Understanding cancer, Elsevier. pp 1–20

  2. Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung I-M, Shariati MA, Rebezov M (2022) Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: current status and future perspectives. in Seminars in Cancer Biology, Elsevier

  3. Long X, Yan J, Zhang Z, Chang J, He B, Sun Y, Liang Y (2022) Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Materials 14:71

    Article  ADS  CAS  Google Scholar 

  4. Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q (2023) Emerging sonodynamic therapy-based nanomedicines for cancer immunotherapy. Advanced Science 10:2204365

    Article  CAS  PubMed  Google Scholar 

  5. Zhu Y, Yang Z, Pan Z, Hao Y, Wang C, Dong Z, Li Q, Han Y, Tian L, Feng L (2022) Metallo-alginate hydrogel can potentiate microwave tumor ablation for synergistic cancer treatment. Sci Adv 8:eabo5285

  6. Zhang Z, Yung KK-L, Ko JK-S (2022) Therapeutic intervention in cancer by isoliquiritigenin from licorice: a natural antioxidant and redox regulator. Antioxidants 11:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lau KH, Tan AM, Shi Y (2022) New and emerging targeted therapies for advanced breast cancer. Int J Mol Sci 23:2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao C, Wang X, Yang N, Song X, Dong X (2022) Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem Sci 13:863–889

    Article  PubMed  Google Scholar 

  9. Zhou Y, Li M, Zhou K, Brown J, Tsao T, Cen X, Husman T, Bajpai A, Dunn ZS, Yang L (2022) Engineering induced pluripotent stem cells for cancer immunotherapy. Cancers 14:2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu M, Cao R, Ma Z, Zhu M (2023) Development of “smart” drug delivery systems for chemo/PDT synergistic treatment. J Mater Chem B 11:1416–1433

    Article  CAS  PubMed  Google Scholar 

  11. Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D (2022) Research progress of conjugated nanomedicine for cancer treatment. Pharmaceutics 14:1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baade PD, Fowler H, Kou K, Dunn J, Chambers SK, Pyke C, Aitken JF (2022) A prognostic survival model for women diagnosed with invasive breast cancer in Queensland, Australia. Breast Cancer Res Treat 195:191–200

    Article  PubMed  PubMed Central  Google Scholar 

  13. Raque TL, McCullough KM, Creegan MA (2023) Unpacking gender for flat breast cancer survivors assigned female at birth: a methodological application of visually informed, critical discursive psychology. Soc Sci 12:563

    Article  Google Scholar 

  14. Nandi S, Bagchi MC (2022) Exploring CDKs, Ras-ERK, and PI3K-Akt in abnormal signaling and cancer. Journal of Cancer Research Updates 11:63–69

    Article  CAS  Google Scholar 

  15. Chandrasekar SA, Palaniyandi T, Parthasarathy U, Surendran H, Viswanathan S, Wahab MRA, Baskar G, Natarajan S, Ranjanen K (2023) Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol-Res Pract 154673

  16. Singh AK, Kumar A, Singh H, Sonawane P, Paliwal H, Thareja S, Pathak P, Grishina M, Jaremko M, Emwas A-H (2022) Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals 15:1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malysheva S, Kuimov V, Belovezhets L, Belogorlova N, Borovskaya M, Borovskii G (2023) Phosphine chalcogenides and their derivatives from red phosphorus and functionalized pyridines, imidazoles, pyrazoles and their antimicrobial and cytostatic activity. Bioorg Chem 132:106363

    Article  CAS  PubMed  Google Scholar 

  18. Delaqua D, Carnier R, Cadore S, Sanches VL, Berton RS, Corbi FCA, Coscione AR (2022) In vitro bioaccessibility and bioavailability of selenium in agronomic biofortified wheat. J Food Compos Anal 105:104253

    Article  CAS  Google Scholar 

  19. Wang H, Qin T, Wang W, Zhou X, Lin F, Liang G, Yang Z, Chi Z, Tang BZ (2023) Selenium‐containing type‐I organic photosensitizers with dual reactive oxygen species of superoxide and hydroxyl radicals as switch‐hitter for photodynamic therapy. Adv Sci 2301902

  20. Mutahir S, Khan MA, Mushtaq M, Deng H, Naglah AM, Almehizia AA, Al-Omar MA, Alrayes FI, Kalmouch A, El-Mowafi SA (2023) Investigations of electronic, structural, and in silico anticancer potential of persuasive phytoestrogenic isoflavene-based Mannich bases. Molecules 28:5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A (2023) To investigate growth factor receptor targets and generate cancer targeting inhibitors. Curr Top Med Chem 23:2877–2972

    Article  CAS  PubMed  Google Scholar 

  22. Nandi S, Dey R, Samadder A, Saxena A, Saxena AK (2022) Natural Sourced inhibitors of EGFR, PDGFR, FGFR and VEGFRMediated signaling pathways as potential anticancer agents. Curr Med Chem 29:212–234

    Article  CAS  PubMed  Google Scholar 

  23. Nandi S, Saxena AK (2021) Exploring targets of cell wall protein synthesis and overexpression mediated drug resistance for the discovery of potential M. tb inhibitors. Curr Top Med Chem 21:1922–1942

    Article  CAS  PubMed  Google Scholar 

  24. Szewczuk NA, Duchowicz PR, Pomilio AB, Lobayan RM (2023) Resonance structure contributions, flexibility, and frontier molecular orbitals (HOMO–LUMO) of pelargonidin, cyanidin, and delphinidin throughout the conformational space: application to antioxidant and antimutagenic activities. J Mol Model 29:2

    Article  CAS  Google Scholar 

  25. Al-Rajhi AM, Ghany TMA (2023) In vitro repress of breast cancer by bio-product of edible Pleurotus ostreatus loaded with chitosan nanoparticles. Appl Biolo Chem 66:33

    Article  CAS  Google Scholar 

  26. Sharma A, Khanum G, Kumar A, Fatima A, Singh M, Abualnaja KM, Althubeiti K, Muthu S, Siddiqui N, Javed S (2022) Conformational stability, quantum computational, spectroscopic, molecular docking and molecular dynamic simulation study of 2-hydroxy-1-naphthaldehyde. J Mol Struct 1259:132755

    Article  CAS  Google Scholar 

  27. Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, Mahmood T, Raza Shah A, Shah SAA, Zakaria ZA (2020) Selective arylation of 2-bromo-4-chlorophenyl-2-bromobutanoate via a Pd-catalyzed Suzuki cross-coupling reaction and its electronic and non-linear optical (NLO) properties via DFT studies. Molecules 25:3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nandi S, Monesi A, Drgan V, Merzel F, Novič M (2013) Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors. Chem Cent J 7:1–13

    Article  Google Scholar 

  29. Aliveisi R, Taherpour A, Yavari I (2019) A DFT study of electronic structures and relative stabilities of isomeric n, m-diazaphenanthrenes. Polycyclic Aromat Compd 39:462–469

    Article  CAS  Google Scholar 

  30. Mebi CA (2011) DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC 5 H 4-S) 2 Fe (CO) 2]. J Chem Sci 123:727–731

    Article  CAS  Google Scholar 

  31. Khajehzadeh M, Moghadam M, Rahmaniasl S (2020) Structural, spectroscopic characterization (UV–vis, FT–IR and NMR) and TGA, TEM, FE–SEM, NBO and FMO analysis for (PdII–PNHC) n@ nSiO2. J Mol Struct 1204:127526

    Article  CAS  Google Scholar 

  32. Zhu Y, Zhang H, Han X, Wang Z, Cui Y, Tian R, Wang Z, Han B, Tian J, Zhang F (2021) STAT3 mediated upregulation of C-MET signaling acts as a compensatory survival mechanism upon EGFR family inhibition in chemoresistant breast cancer cells. Cancer Lett 519:328–342

    Article  CAS  PubMed  Google Scholar 

  33. Carvelli J, Demaria O, Vély F, Batista L, Benmansour NC, Fares J, Carpentier S, Thibult M-L, Morel A, André P (2020) Identification of immune checkpoints in COVID-19

  34. Strzelecka M, Glomb T, Drąg-Zalesińska M, Kulbacka J, Szewczyk A, Saczko J, Kasperkiewicz-Wasilewska P, Rembiałkowska N, Wojtkowiak K, Jezierska A (2022) Synthesis, anticancer activity and molecular docking studies of novel N-Mannich bases of 1, 3, 4-oxadiazole based on 4, 6-dimethylpyridine scaffold. Int J Mol Sci 23:11173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mutahir S, Khan MA, Naglah AM, Al-Omar MA, Almehizia AA, Huwaimel B, Abouzied AS, Alharbi AS, Refat MS (2023) Structural Characterization and molecular docking screening of most potent 1, 2, 4-triazine sulfonamide derivatives as anti-cancer agents. Crystals 13:767

    Article  CAS  Google Scholar 

  36. Yadav R, Hasan S, Mahato S, Celik I, Mary Y, Kumar A, Dhamija P, Sharma A, Choudhary N, Chaudhary PK (2021) Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. J Mol Liq 342:116942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tabti K, Abdessadak O, Sbai A, Maghat H, Bouachrine M, Lakhlifi T (2023) Design and development of novel spiro-oxindoles as potent antiproliferative agents using quantitative structure activity based Monte Carlo method, docking molecular, molecular dynamics, free energy calculations, and pharmacokinetics/toxicity studies. J Mol Struct 1284:135404

    Article  CAS  Google Scholar 

  38. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hildebrand PW, Rose AS, Tiemann JK (2019) Bringing molecular dynamics simulation data into view. Trends Biochem Sci 44:902–913

    Article  CAS  PubMed  Google Scholar 

  40. Rasheed MA, Iqbal MN, Saddick S, Ali I, Khan FS, Kanwal S, Ahmed D, Ibrahim M, Afzal U, Awais M (2021) Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing. Life 11:77

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abd-Allah WH, Anwar MAE-M, Mohammed ER, Elbaset MA, El Moghazy SM (2023) Exploring new cyclohexane carboxamides based GABA agonist: design, synthesis, biological evaluation, in silico ADME and docking studies. Bioorg Chem 136:106561

    Article  Google Scholar 

  42. Honorio M, K., L Moda, T., and D Andricopulo, A. (2013) Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med Chem 9:163–176

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee A, Roy K (2023) Machine-learning-based similarity meets traditional QSAR:“q-RASAR” for the enhancement of the external predictivity and detection of prediction confidence outliers in an hERG toxicity dataset. Chemom Intell Lab Syst 237:104829

    Article  CAS  Google Scholar 

  44. Bhabak KP, Satheeshkumar K, Jayavelu S, Mugesh G (2011) Inhibition of peroxynitrite-and peroxidase-mediated proteintyrosine nitration by imidazole-based thiourea and selenourea derivatives. Org Biomol Chem 9:7343–7350

    Article  CAS  PubMed  Google Scholar 

  45. Jamil MSS, Endot NA (2020) Influence of fluorine substituents on the electronic properties of selenium-N-heterocyclic carbene compounds. Molecules 25:5161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benkova Z, Kóňa J, Gann G, Fabian WM (2002) Redox chemistry of organoselenium compounds: ab initio and density functional theory calculations on model systems for transition states and intermediates of the redox cycle of selenoenzymes. Int J Quantum Chem 90:555–565

    Article  CAS  Google Scholar 

  47. Hajlaoui S, Chaabane I, Oueslati A, Guidara K, Bulou A (2014) A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of new organic–inorganic compound [N (C3H7) 4] 2SnCl6. Spectrochim Acta Part A Mol Biomol Spectrosc 117:225–233

    Article  ADS  CAS  Google Scholar 

  48. Bhat MA, Lone SH, Ali S, Srivastava SK (2018) Synthesis, spectral characterization, reactivity and DFT studies of novel ligand phenylseleno benzylacetate (L) and its complexes with group 12 metal chlorides. J Mol Struct 1171:233–242

    Article  ADS  CAS  Google Scholar 

  49. Hussan KS, Thayyil MS, Rajan VK, Muraleedharan K (2019) DFT studies on global parameters, antioxidant mechanism and molecular docking of amlodipine besylate. Comput Biol Chem 80:46–53

    Article  Google Scholar 

  50. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. 3:935–949

  51. Catalani V, Floresta G, Botha M, Corkery JM, Guirguis A, Vento A, Schifano F (2023) In silico studies on recreational drugs: 3D quantitative structure activity relationship prediction of classified and de novo designer benzodiazepines. 101:40–51

  52. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. 267:727–748

  53. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. 19:1639–1662

  54. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. 15:411–428

  55. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. 161:269–288

  56. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to King Saud University, Riyadh, Saudi Arabia, for funding the work through the Researchers Supporting Project No. (RSPD2024R852).

Funding

This research was funded by King Saud University, Riyadh, Saudi Arabia, through the Researchers Supporting Project No. (RSPD2024R852).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.M. and M.A.K.; methodology, I.A. and M.A.K.; software, , A.A.A. and M.A.T.; formal analysis, M.A.K.; investigation, S.M.; resources, S.M. and AA.A.; writing—original draft preparation, S.M., Z.M. and M.A.K.; writing—review and editing, M.A.K.; supervision, S.M. and M.A.K.; project administration, S.M. and M.A.K. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sadaf Mutahir or Muhammad Asim Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutahir, S., Khan, M.A., Asif, I. et al. Persuasive phytoestrogenic imidazole-based selenium N-heterocyclic carbenes: electronic, structural, and in silico anticancer potential investigations. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02301-9

Keywords

Navigation