Skip to main content
Log in

Electronically tuned molecular torsion balances via remote substituents: a stabilizing factor for S \(\cdots\) O chalcogen bond

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Noncovalent interactions have an impact on the properties of condensed phases, solutions, and crystals. These interactions can occur between groups within a molecule (intra-) or between molecules (inter-). The current report examines a series of molecular balances as a quantitative method for evaluating the electronic effects of electron-donating (ED) and electron-withdrawing (EW) substituents in the para-position. Additionally, the impact on the stabilization of the two isomers (open and closed) and the strength of the intramolecular interactions is discussed in the report. The relative stability of the geometrical isomers, as well as the enthalpy, Gibbs free energy, and entropy for all 24 structures are analyzed. It was noted that the stability of the structures was associated with the substituents and the nature of the conformer. A strong positive correlation was observed between the calculated relative enthalpies and total energies as with R2 = 0.96. The calculated ΔH ranges between − 13.77 and 5.74 kJ mol−1, substitution of ED resulted in ΔH < 0, and the most negative value observed for strong ED  namely N(CH3)2. It is worth noting that substitution of EW resulted in positive values of ΔH except for F. The calculated highest occupied molecular orbital and lowest unoccupied molecular orbital are found in the ranges − 5.19 to − 6.78 eV and − 5.58 to − 6.16 eV for open and closed conformers, respectively. The preference for the folded state can be attributed to weak S \(\cdots\) O chalcogen interactions. The observed relationship between electronic effects and torsional and chalcogen bonding properties offers insights into designing and manipulating molecular systems with specific conformational preferences and noncovalent interactions that may have potential implications in the development of molecular switches, sensors, and materials with tailored properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Metrangolo P et al (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47(33):6114–6127

    Article  CAS  Google Scholar 

  2. Mele A et al (2005) A halogen-bonding-based heteroditopic receptor for alkali metal halides. J Am Chem Soc 127(43):14972–14973

    Article  PubMed  CAS  Google Scholar 

  3. Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7(12):2511–2519

    Article  PubMed  CAS  Google Scholar 

  4. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14(2):278–294

    Article  PubMed  CAS  Google Scholar 

  5. Bui TTT et al (2009) The nature of halogen⋅⋅⋅ halogen interactions: a model derived from experimental charge-density analysis. Angew Chem 121(21):3896–3899

    Article  Google Scholar 

  6. Bauzá A et al (2013) Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 15(16):3137–3144

    Article  Google Scholar 

  7. Scheiner S (2013) The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46(2):280–288

    Article  PubMed  CAS  Google Scholar 

  8. Zahn S et al (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17(22):6034–6038

    Article  PubMed  CAS  Google Scholar 

  9. Bai M et al (2014) A donor–acceptor–donor structured organic conductor with S··· s chalcogen bonding. Cryst Growth Des 14(2):459–466

    Article  CAS  Google Scholar 

  10. Brezgunova ME et al (2013) Chalcogen bonding: experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic–nucleophilic interactions. Cryst Growth Des 13(8):3283–3289

    Article  CAS  Google Scholar 

  11. Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113(28):8132–8135

    Article  PubMed  Google Scholar 

  12. Lu Y et al (2012) Halogen bonding for rational drug design and new drug discovery. Expert Opin Drug Discov 7(5):375–383

    Article  PubMed  CAS  Google Scholar 

  13. Costa PJ, Nunes R, Vila-Viçosa D (2019) Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin Drug Discov 14(8):805–820

    Article  PubMed  CAS  Google Scholar 

  14. Di J et al (2021) Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv Energy Mater 11(41):2102389

    Article  CAS  Google Scholar 

  15. Peng Q et al (2022) Cationic Ru complexes anchored on POM via non-covalent interaction towards efficient transfer hydrogenation catalysis. Mol Catal 517

    Article  CAS  Google Scholar 

  16. Geng L et al (2019) Instant hydrogel formation of terpyridine-based complexes triggered by DNA via non-covalent interaction. Nanoscale 11(9):4044–4052

    Article  PubMed  CAS  Google Scholar 

  17. Hu L et al (2010) Predicting the binding affinity of epitope-peptides with HLA-A* 0201 by encoding atom-pair non-covalent interaction information between receptor and ligands. Chem Biol Drug Des 75(6):597–606

    Article  PubMed  CAS  Google Scholar 

  18. Singh J, Kim H, Chi KW (2021) Non-covalent interaction-directed coordination-driven self-assembly of non-trivial supramolecular topologies. Chem Rec 21(3):574–593

    Article  PubMed  CAS  Google Scholar 

  19. Turro NJ (2002) From molecular chemistry to supramolecular chemistry to superdupermolecular chemistry. Controlling covalent bond formation through non-covalent and magnetic interactions. Chem Commun (20):2279–2292

  20. Yan W et al (2021) Harnessing noncovalent interaction of chalcogen bond in organocatalysis: From the catalyst point of view. Green Synth Catal 2(4):329–336

    Article  Google Scholar 

  21. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113(11):1609–1620

    Article  CAS  Google Scholar 

  22. Lenardão EJ, Santi C, Sancineto L (2018) New frontiers in organoselenium compounds. Vol. 6330. Springer

  23. Beno BR et al (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58(11):4383–4438

    Article  PubMed  CAS  Google Scholar 

  24. Werz DB, Gleiter R, Rominger F (2002) Nanotube formation favored by chalcogen− chalcogen interactions. J Am Chem Soc 124(36):10638–10639

    Article  PubMed  CAS  Google Scholar 

  25. Wilming FM, Becker J, Schreiner PR (2021) Quantifying solvophobic effects in organic solvents using a hydrocarbon molecular balance. J Org Chem 87(3):1874–1878

    Article  PubMed  Google Scholar 

  26. Schümann JM et al (2020) Intramolecular London dispersion interactions do not cancel in solution. J Am Chem Soc 143(1):41–45

    Article  PubMed  Google Scholar 

  27. Pollice R et al (2017) Attenuation of London dispersion in dichloromethane solutions. J Am Chem Soc 139(37):13126–13140

    Article  PubMed  CAS  Google Scholar 

  28. Mati IK, Adam C, Cockroft SL (2013) Seeing through solvent effects using molecular balances. Chem Sci 4(10):3965–3972

    Article  CAS  Google Scholar 

  29. Muchowska KB et al (2013) Electrostatic modulation of aromatic rings via explicit solvation of substituents. J Am Chem Soc 135(27):9976–9979

    Article  PubMed  CAS  Google Scholar 

  30. Dominelli-Whiteley N et al (2017) Strong short-range cooperativity in hydrogen-bond chains. Angew Chem 129(26):7766–7770

    Article  Google Scholar 

  31. Raymo FM, Stoddart JF (1999) Interlocked macromolecules. Chem Rev 99(7):1643–1664

    Article  PubMed  CAS  Google Scholar 

  32. Orlandi M et al (2017) Parametrization of non-covalent interactions for transition state interrogation applied to asymmetric catalysis. J Am Chem Soc 139(20):6803–6806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Seguin TJ, Wheeler SE (2016) Stacking and electrostatic interactions drive the stereoselectivity of silylium-ion asymmetric counteranion-directed catalysis. Angew Chem Int Ed 55(51):15889–15893

    Article  CAS  Google Scholar 

  34. McNeil AJ et al (2006) Conjugated polymers in an arene sandwich. J Am Chem Soc 128(38):12426–12427

    Article  PubMed  CAS  Google Scholar 

  35. Vacas T et al (2010) Role of aromatic rings in the molecular recognition of aminoglycoside antibiotics: implications for drug design. J Am Chem Soc 132(34):12074–12090

    Article  PubMed  CAS  Google Scholar 

  36. McGaughey GB, Gagné M, Rappé AK (1998) π-stacking interactions: alive and well in proteins. J Biol Chem 273(25):15458–15463

    Article  PubMed  CAS  Google Scholar 

  37. Becke AD (1996) Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. J Chem Phys 104(3):1040–1046

    Article  CAS  Google Scholar 

  38. Frisch MJ et al (2016) Gaussian 16 Rev. C.01. Wallingford, CT

  39. Pascoe DJ, Ling KB, Cockroft SL (2017) The origin of chalcogen-bonding interactions. J Am Chem Soc 139(42):15160–15167

    Article  PubMed  CAS  Google Scholar 

  40. Gurbanov AV et al (2020) Resonance assisted chalcogen bonding as a new synthon in the design of dyes. Chem Eur J 26(65):14833–14837

    Article  PubMed  CAS  Google Scholar 

  41. Bredas J-L (2014) Mind the gap! Mater Horiz 1(1):17–19

    Article  CAS  Google Scholar 

  42. Zanjanchi F, Beheshtian J (2019) Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study. J Iran Chem Soc 16:795–805

    Article  CAS  Google Scholar 

  43. Mehta N et al (2021) CHAL336 benchmark set: how well do quantum-chemical methods describe chalcogen-bonding interactions? J Chem Theory Comput 17(5):2783–2806

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge valuable contributions of Fortunatus R. Jacob in reviewing and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.D. conceptualized the idea, collected the data, wrote the main manuscript text, prepared figures, and reviewed the manuscript.

Corresponding author

Correspondence to Geradius Deogratias.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1488 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deogratias, G. Electronically tuned molecular torsion balances via remote substituents: a stabilizing factor for S \(\cdots\) O chalcogen bond. Struct Chem 35, 89–95 (2024). https://doi.org/10.1007/s11224-023-02218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02218-9

Keywords

Navigation